首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Antibodies that specifically recognize signaling proteins (or individual phosphorylation events at specific residues in proteins of interest) have become important tools in the study of signaling pathways. However, the recognition properties of many commercially available antibodies have not been fully characterized. In the course of studies exploring PKC- phosphorylation mechanisms in cardiomyocytes, we have demonstrated that a BD Transduction Laboratories anti-PKC- MAb (generally viewed as an anti-PKC- protein antibody) recognizes PKC- in resting, but not in PMA-treated, cardiomyocytes. The observations that PKC- immunoreactivity is preserved when cultures are treated with PMA in the presence of a the PKC inhibitor GF-109203X and that PKC- immunoreactivity is restored by in vitro acid phosphatase treatment indicate that the epitope recognized by the BD Transduction Laboratories anti-PKC- MAb is masked by phosphorylation. The BD Transduction Laboratories MAb is poorly suited for studies that compare PKC- expression in resting and agonist-activated samples (or in studies of the relationship between PKC- phosphorylation and PKC- downregulation) because it artifactually displays PKC- phosphorylation as a decline in total PKC- protein. Other studies have shown that two anti-PKC--pY311 antibodies (manufactured by Cell Signaling Technology, Beverly, MA, and BioSource International, Camarillo, CA, respectively) specifically recognize stimulus-induced changes in PKC--Y311 phosphorylation on the endogenous PKC- enzyme, but the Cell Signaling Technology anti-PKC--pY311 antibody provides a better measure of Y311 phosphorylation in overexpressed PKC-. Collectively, these studies have identified features of anti-PKC- antibodies that affect the interpretation of immunoblot analysis experiments. These findings related to PKC- may be symptomatic of a more pervasive feature of immunoblot analysis studies of phosphoproteins in general. protein phosphorylation; signal transduction pathways; cardiomyocytes  相似文献   

2.
TNF is implicated in the attenuation of neutrophil constitutive apoptosis during sepsis. Antiapoptotic signaling is mediated principally through the TNF receptor-1 (TNFR-1). In adherent neutrophils, when -integrin signaling is activated, TNF phosphorylates TNFR-1 and activates prosurvival and antiapoptotic signaling. Previously, we identified the -PKC isotype and phosphatidylinositol (PI) 3-kinase as critical regulators of TNF signaling in adherent neutrophils. Both kinases associate with TNFR-1 in response to TNF and are required for TNFR-1 serine phosphorylation, NF-B activation, and inhibition of apoptosis. The purpose of this study was to examine the role of -PKC and PI 3-kinase in the assembly of TNFR-1 signaling complex that regulates NF-B activation and antiapoptotic signaling. Coimmunoprecipitation studies established that PI 3-kinase, -PKC, and TNFR-1 formed a signal complex in response to TNF. -PKC recruitment required both -PKC and PI 3-kinase activity, whereas PI 3-kinase recruitment was -PKC independent, suggesting that PI 3-kinase acts upstream of -PKC. An important regulatory step in control of antiapoptotic signaling is the assembly of the TNFR-1-TNFR-1-associated death domain protein (TRADD)-TNFR-associated factor 2 (TRAF2)-receptor interacting protein (RIP) complex that controls NF-B activation. Inhibition of either -PKC or PI 3-kinase decreased TNF-mediated recruitment of RIP and TRAF2 to TNFR-1. In contrast, TRADD recruitment was enhanced. Thus -PKC and PI 3-kinase are positive regulators of TNF-mediated association of TRAF2 and RIP with TNFR-1. Conversely, these kinases are negative regulators of TRADD association. These results suggest that -PKC and PI 3-kinase regulate TNF antiapoptotic signaling at the level of the TNFR-1 through control of assembly of a TNFR-1-TRADD-RIP-TRAF2 complex. inflammation; tumor necrosis factor receptor-1-associated death domain protein; receptor interacting protein; tumor necrosis factor receptor-associated factor 2; antiapoptotic signaling  相似文献   

3.
Cyclooxygenase-2 (COX-2) mediates various inflammatory responses and is expressed in pancreatic tissue from patients with chronic pancreatitis. To examine the role of COX-2 in chronic pancreatitis, we investigated its participation in regulating functions of pancreatic stellate cells (PSCs), using isolated rat PSCs. COX-2 was expressed in culture-activated PSCs but not in freshly isolated quiescent PSCs. TGF-1, IL-1, and IL-6 enhanced COX-2 expression in activated PSCs, concomitantly increasing the expression of -smooth muscle actin (-SMA), a parameter of PSC activation. The COX-2 inhibitor NS-398 blocked culture activation of freshly isolated quiescent PSCs. NS-398 also inhibited the enhancement of -SMA expression by TGF-1, IL-1, and IL-6 in activated PSCs. These data indicate that COX-2 is required for the initiation and promotion of PSC activation. We further investigated the mechanism by which cytokines enhance COX-2 expression in PSCs. Adenovirus-mediated expression of dominant negative Smad2/3 inhibited the increase in expression of COX-2, -SMA, and collagen-1 mediated by TGF-1 in activated PSCs. Moreover, dominant negative Smad2/3 expression attenuated the expression of COX-2 and -SMA enhanced by IL-1 and IL-6. Anti-TGF- neutralizing antibody also attenuated the increase in COX-2 and -SMA expression caused by IL-1 and IL-6. IL-6 as well as IL-1 enhanced TGF-1 secretion from PSCs. These data indicate that Smad2/3-dependent pathway plays a central role in COX-2 induction by TGF-1, IL-1, and IL-6. Furthermore, IL-1 and IL-6 promote PSC activation by enhancing COX-2 expression indirectly through Smad2/3-dependent pathway by increasing TGF-1 secretion from PSCs. transforming growth factor-; interleukin; Smad; autocrine; pancreatic fibrosis  相似文献   

4.
Direct binding of nonmuscle F-actin and the C2-like domain of PKC- (C2-like domain) is involved in hormone-mediated activation of epithelial Na-K-2Cl cotransporter isoform 1 (NKCC1) in a Calu-3 airway epithelial cell line. The goal of this study was to determine the site of actin binding on the 123-amino acid C2-like domain. Truncations of the C2-like domain were made by restriction digestion and confirmed by nucleotide sequencing. His6-tagged peptides were expressed in bacteria, purified, and analyzed with a Coomassie blue stain for predicted size and either a 6xHis protein tag stain or an INDIA His6 probe for expression of the His6 tag. Truncated peptides were tested for competitive inhibition of binding of activated, recombinant PKC- with nonmuscle F-actin. Peptides from the NH2-terminal region, but not the COOH-terminal region, of the C2-like domain blocked binding of activated PKC- to F-actin. The C2-like domain and three NH2-terminal truncated peptides of 17, 83, or 108 amino acids blocked binding, with IC50 values ranging from 1.2 to 2.2 nmol (6–11 µM). NH2-terminal C2-like peptides also prevented methoxamine-stimulated NKCC1 activation and pulled down endogenous actin from Calu-3 cells. The proximal NH2 terminus of the C2-like domain encodes a 1-sheet region. The amino acid sequence of the actin-binding domain is distinct from actin-binding domains in other PKC isotypes and actin-binding proteins. Our results indicate that F-actin likely binds to the 1-sheet region of the C2-like domain in airway epithelial cells. truncation; protein kinase C-; C2-like domain; slot blot assay; inhibitory constant; bumetanide; Na-K-2Cl cotransporter  相似文献   

5.
Protein kinase C (PKC) plays a critical role in diseases such as cancer, stroke, and cardiac ischemia and participates in a variety of signal transduction pathways including apoptosis, cell proliferation, and tumor suppression. Here, we demonstrate that PKC is proteolytically cleaved and translocated to the nucleus in a time-dependent manner on treatment of desferroxamine (DFO), a hypoxia-mimetic agent. Specific knockdown of the endogenous PKC by RNAi (sh-PKC) or expression of the kinase-dead (Lys376Arg) mutant of PKC (PKCKD) conferred modulation on the cellular adaptive responses to DFO treatment. Notably, the time-dependent accumulation of DFO-induced phosphorylation of Ser-139-H2AX (-H2AX), a hallmark for DNA damage, was altered by sh-PKC, and sh-PKC completely abrogated the activation of caspase-3 in DFO-treated cells. Expression of Lys376Arg-mutated PKC-enhanced green fluorescent protein (EGFP) appears to abrogate DFO/hypoxia-induced activation of endogenous PKC and caspase-3, suggesting that PKCKD-EGFP serves a dominant-negative function. Additionally, DFO treatment also led to the activation of Chk1, p53, and Akt, where DFO-induced activation of p53, Chk1, and Akt occurred in both PKC-dependent and -independent manners. In summary, these findings suggest that the activation of a PKC-mediated signaling network is one of the critical contributing factors involved in fine-tuning of the DNA damage response to DFO treatment. DNA damage; caspase-3; Akt  相似文献   

6.
Knockout of transforming growth factor (TGF)-1 or components of its signaling pathway leads to embryonic death in mice due to impaired yolk sac vascular development before significant smooth muscle cell (SMC) maturation occurs. Thus the role of TGF-1 in SMC development remains unclear. Embryonic stem cell (ESC)-derived embryoid bodies (EBs) recapitulate many of the events of early embryonic development and represent a more physiological context in which to study SMC development than most other in vitro systems. The present studies showed induction of the SMC-selective genes smooth muscle -actin (SMA), SM22, myocardin, smoothelin-B, and smooth muscle myosin heavy chain (SMMHC) within a mouse ESC-EB model system. Significantly, SM2, the SMMHC isoform associated with fully differentiated SMCs, was expressed. Importantly, the results showed that aggregates of SMMHC-expressing cells exhibited visible contractile activity, suggesting that all regulatory pathways essential for development of contractile SMCs were functional in this in vitro model system. Inhibition of endogenous TGF- with an adenovirus expressing a soluble truncated TGF- type II receptor attenuated the increase in SMC-selective gene expression in the ESC-EBs, as did an antibody specific for TGF-1. Of interest, the results of small interfering (si)RNA experiments provided evidence for differential TGF--Smad signaling for an early vs. late SMC marker gene in that SMA promoter activity was dependent on both Smad2 and Smad3 whereas SMMHC activity was Smad2 dependent. These results are the first to provide direct evidence that TGF-1 signaling through Smad2 and Smad3 plays an important role in the development of SMCs from totipotential ESCs. embryoid body; Smad  相似文献   

7.
To elucidate signaling pathways activated by IL-1 and IL-6 that contribute to increased expression of plasminogen activator inhibitor-1 (PAI-1), we studied human hepatoma (HepG2) cells and primary mouse hepatocytes. HepG2 cell PAI-1 mRNA increased in response to IL-1, IL-6, and IL-1 plus IL-6 as shown by real-time PCR. Activity of the transiently transfected PAI-1 promoter (–829 to +36 bp) increased as well. Systematic promoter deletion assays showed that the region from –239 to –210 bp containing a putative CCAAT-enhancer binding protein (C/EBP) binding site was critical. Point mutations in this region abolished the IL-1 and IL-6 responses. Antibody interference electrophoretic mobility shift assays showed that C/EBP (but not C/EBP or C/EBP) binding and protein were increased by IL-1, IL-6, and IL-1 plus IL-6 in HepG2 cells. IL-1 and IL-6 increased expression of both PAI-1 mRNA and C/EBP mRNA in mouse primary hepatocytes as well. Downregulation of C/EBP induced with small interfering RNA (siRNA) decreased secretion of PAI-1. As judged from results obtained with inhibitors, signal transduction in all three of the mitogen-activated protein kinase pathways was involved in IL-1-inducible PAI-1 expression. By contrast, JAK signaling was responsible for the IL-6-induced inducible expression. Thus IL-1 and IL-6 exert directionally similar effects on PAI-1 expression, but the induction involves distinct signaling pathways with a final common mediator, C/EBP. CCAAT-enhancer binding protein; interleukin-1; interleukin-6; statins; thrombosis  相似文献   

8.
Activation of NF-B requires the phosphorylation and degradation of its associated inhibitory proteins, IB. Previously, we reported that the extracellular signal-regulated kinase (ERK) is required for IL-1 to induce persistent activation of NF-B in cultured rat vascular smooth muscle cells (VSMCs). The present study examined the mechanism by which the ERK signaling cascade modulates the duration of NF-B activation. In cultured rat VSMCs, IL-1 activated ERK and induced degradation of both IB and IB, which was associated with nuclear translocation of both ribosomal S6 kinase (RSK)1 and NF-B p65. RSK1, a downstream kinase of ERK, was associated with an IB/NF-B complex, which was independent of the phosphorylation status of RSK1. Treatment of VSMCs with IL-1 decreased IB in the RSK1/IB/NF-B complex, an effect that was attenuated by inhibition of ERK activation. Knockdown of RSK1 by small interference RNA attenuated the IL-1-induced IB decrease without influencing ether ERK phosphorylation or the earlier IB degradation. By using recombinant wild-type and mutant IB proteins, both active ERK2 and RSK1 were found to directly phosphorylate IB, but only active RSK1 phosphorylated IB on Ser19 and Ser23, two sites known to mediate the subsequent ubiquitination and degradation. In conclusion, in the ERK signaling cascade, RSK1 is a key component that directly phosphorylates IB and contributes to the persistent activation of NF-B by IL-1. extracellular signal-regulated kinase; in vitro phosphorylation assay; recombinant proteins; small interference RNA; vascular smooth muscle cell  相似文献   

9.
Airway goblet cell mucin secretion is controlled by agonist activation of P2Y2 purinoceptors, acting through Gq/PLC, inositol-1,4,5-trisphosphate (IP3), diacylglycerol, Ca2+ and protein kinase C (PKC). Previously, we showed that SPOC1 cells express cPKC, nPKC, nPKC, and nPKC; of these, only nPKC translocated to the membrane in correlation with mucin secretion (Abdullah LH, Bundy JT, Ehre C, Davis CW. Am J Physiol Lung Physiol 285: L149–L160, 2003). We have verified these results and pursued the identity of the PKC effector isoform by testing the effects of altered PKC expression on regulated mucin release using SPOC1 cell and mouse models. SPOC1 cells overexpressing cPKC, nPKC, and nPKC had the same levels of ATPS- and phorbol-1,2-myristate-13-acetate (PMA)-stimulated mucin secretion as the levels in empty retroviral vector expressing cells. Secretagogue-induced mucin secretion was elevated only in cells overexpressing nPKC (14.6 and 23.5%, for ATPS and PMA). Similarly, only SPOC1 cells infected with a kinase-deficient nPKC exhibited the expected diminution of stimulated mucin secretion, relative to wild-type (WT) isoform overexpression. ATPS-stimulated mucin secretion from isolated, perfused mouse tracheas was diminished in P2Y2-R null mice by 82% relative to WT mice, demonstrating the utility of mouse models in studies of regulated mucin secretion. Littermate WT and nPKC knockout (KO) mice had nearly identical levels of stimulated mucin secretion, whereas mucin release was nearly abolished in nPKC KO mice relative to its WT littermates. We conclude that nPKC is the effector isoform downstream of P2Y2-R activation in the goblet cell secretory response. The translocation of nPKC observed in activated cells is likely not related to mucin secretion but to some other aspect of goblet cell biology. protein kinase C; mucins; goblet cells; exocytosis; airways; epithelium; lung  相似文献   

10.
We investigated the involvement of PKC- in apical actin remodeling in carbachol-stimulated exocytosis in reconstituted rabbit lacrimal acinar cells. Lacrimal acinar PKC- cosedimented with actin filaments in an actin filament binding assay. Stimulation of acini with carbachol (100 µM, 2–15 min) significantly (P 0.05) increased PKC- recovery with actin filaments in two distinct biochemical assays, and confocal fluorescence microscopy showed a significant increase in PKC- association with apical actin in stimulated acini as evidenced by quantitative colocalization analysis. Overexpression of dominant-negative (DN) PKC- in lacrimal acini with replication-defective adenovirus (Ad) resulted in profound alterations in apical and basolateral actin filaments while significantly inhibiting carbachol-stimulated secretion of bulk protein and -hexosaminidase. The chemical inhibitor GF-109203X (10 µM, 3 h), which inhibits PKC-, -, -, and -, also elicited more potent inhibition of carbachol-stimulated secretion relative to Gö-6976 (10 µM, 3 h), which inhibits only PKC- and -. Transduction of lacrimal acini with Ad encoding syncollin-green fluorescent protein (GFP) resulted in labeling of secretory vesicles that were discharged in response to carbachol stimulation, whereas cotransduction of acini with Ad-DN-PKC- significantly inhibited carbachol-stimulated release of syncollin-GFP. Carbachol also increased the recovery of secretory component in culture medium, whereas Ad-DN-PKC- transduction suppressed its carbachol-stimulated release. We propose that DN-PKC- alters lacrimal acinar apical actin remodeling, leading to inhibition of stimulated exocytosis and transcytosis. lacrimal gland; acinar epithelial cell; exocytosis; polymeric immunoglobulin A receptor  相似文献   

11.
We studied the functions of -subunits of Gi/o protein using the Xenopus oocyte expression system. Isoproterenol (ISO) elicited cAMP production and slowly activating Cl currents in oocytes expressing 2-adrenoceptor and the protein kinase A-dependent Cl channel encoded by the cystic fibrosis transmembrane conductance regulator (CFTR) gene. 5-Hydroxytryptamine (5-HT), [D-Ala2, D-Leu5]-enkephalin (DADLE), and baclofen enhanced ISO-induced cAMP levels and CFTR currents in oocytes expressing 2-adrenoceptor-CFTR and 5-HT1A receptor (5-HT1AR), -opioid receptor, or GABAB receptor, respectively. 5-HT also enhanced pituitary adenylate cyclase activating peptide (PACAP) 38-induced cAMP levels and CFTR currents in oocytes expressing PACAP receptor, CFTR and 5-HT1AR. The 5-HT-induced enhancement of Gs-coupled receptor-mediated currents was abrogated by pretreatment with pertussis toxin (PTX) and coexpression of G transducin (Gt). The 5-HT-induced enhancement was further augmented by coexpression of the G-activated form of adenylate cyclase (AC) type II but not AC type III. Thus -subunits of Gi/o protein contribute to the enhancement of Gs-coupled receptor-mediated responses. 5-HT and DADLE did not elicit any currents in oocytes expressing 5-HT1AR or -opioid receptor alone. They elicited Ca2+-activated Cl currents in oocytes coexpressing these receptors with the G-activated form of phospholipase C (PLC)-2 but not with PLC-1. These currents were inhibited by pretreatment with PTX and coexpression of Gt, suggesting that -subunits of Gi/o protein activate PLC-2 and then cause intracellular Ca2+ mobilization. Our results indicate that -subunits of Gi/o protein participate in diverse intracellular signals, enhancement of Gs-coupled receptor-mediated responses, and intracellular Ca2+ mobilization. G protein-coupled receptor; cystic fibrosis transmembrane conductance regulator gene; cross talk; electrophysiology  相似文献   

12.
Pancreatic stellate cells (PSCs) are activated during pancreatitis and promote pancreatic fibrosis by producing and secreting ECMs such as collagen and fibronectin. IL-1 has been assumed to participate in pancreatic fibrosis by activating PSCs. Activated PSCs secrete various cytokines that regulate PSC function. In this study, we have examined IL-1 secretion from culture-activated PSCs as well as its regulatory mechanism. RT-PCR and ELISA have demonstrated that PSCs express IL-1 mRNA and secrete IL-1 peptide. Inhibition of TGF-1 activity secreted from PSCs by TGF-1-neutralizing antibody attenuated IL-1 secretion from PSCs. Exogenous TGF-1 increased IL-1 expression and secretion by PSCs in a dose-dependent manner. Adenovirus-mediated expression of dominant-negative (dn)Smad2/3 expression reduced both basal and TGF-1-stimulated IL-1 expression and secretion by PSCs. Coexpression of Smad3 with dnSmad2/3 restored IL-1 expression and secretion by PSCs, which were attenuated by dnSmad2/3 expression. In contrast, coexpression of Smad2 with dnSmad2/3 did not alter them. Furthermore, inhibition of IL-1 activity secreted from PSCs by IL-1-neutralizing antibody attenuated TGF-1 secretion from PSCs. Exogenous IL-1 enhanced TGF-1 expression and secretion by PSCs. IL-1 activated ERK, and PD-98059, a MEK1 inhibitor, blocked IL-1 enhancement of TGF-1 expression and secretion by PSCs. We propose that an autocrine loop exists between TGF-1 and IL-1 in activated PSCs through Smad3- and ERK-dependent pathways. fibrosis; cytokine; chronic pancreatitis  相似文献   

13.
-Syntrophin is a component of the dystrophin glycoprotein complex (DGC). It is firmly attached to the dystrophin cytoskeleton via a unique COOH-terminal domain and is associated indirectly with -dystroglycan, which binds to extracellular matrix laminin. Syntrophin contains two pleckstrin homology (PH) domains and one PDZ domain. Because PH domains of other proteins are known to bind the -subunits of the heterotrimeric G proteins, whether this is also a property of syntrophin was investigated. Isolated syntrophin from rabbit skeletal muscle binds bovine brain G-subunits in gel blot overlay experiments. Laminin-1-Sepharose or specific antibodies against syntrophin, - and -dystroglycan, or dystrophin precipitate a complex with G from crude skeletal muscle microsomes. Bacterially expressed syntrophin fusion proteins and truncation mutants allowed mapping of G binding to syntrophin's PDZ domain; this is a novel function for PDZ domains. When laminin-1 is bound, maximal binding of Gs and G occurs and active Gs, measured as GTP-35S bound, decreases. Because intracellular Ca2+ is elevated in Duchenne muscular dystrophy and Gs is known to activate the dihydropyridine receptor Ca2+ channel, whether laminin also altered intracellular Ca2+ was investigated. Laminin-1 decreases active (GTP-S-bound) Gs, and the Ca2+ channel is inhibited by laminin-1. The laminin 1-chain globular domains 4 and 5 region, the region bound by DGC -dystroglycan, is sufficient to cause an effect, and an antibody that specifically blocks laminin binding to -dystroglycan inhibits G binding by syntrophin in C2C12 myotubes. These observations suggest that DGC is a matrix laminin, G protein-coupled receptor. Duchenne muscular dystrophy; protein G -subunit; pleckstrin homology domain  相似文献   

14.
Activation of PLC-delta1 by Gi/o-coupled receptor agonists   总被引:1,自引:0,他引:1  
The mechanism of phospholipase (PLC)- activation by G protein-coupled receptor agonists was examined in rabbit gastric smooth muscle. Ca2+ stimulated an eightfold increase in PLC-1 activity in permeabilized muscle cells. Treatment of dispersed or cultured muscle cells with three Gi/o-coupled receptor agonists (somatostatin, -opioid agonist [D-Pen2,D-Pen5]enkephalin, and A1 agonist cyclopentyl adenosine) caused delayed increase in phosphoinositide (PI) hydrolysis (8- to 10-fold) that was strongly inhibited by overexpression of dominant-negative PLC-1(E341R/D343R; 65–76%) or constitutively active RhoA(G14V). The response coincided with capacitative Ca2+ influx and was not observed in the absence of extracellular Ca2+, but was partly inhibited by nifedipine (16–30%) and strongly inhibited by SKF-96365, a blocker of store-operated Ca2+ channels. Treatment of the cells with a Gq/13-coupled receptor agonist, CCK-8, caused only transient, PLC-1-mediated PI hydrolysis. Unlike Gi/o-coupled receptor agonists, CCK-8 activated RhoA and stimulated RhoA:PLC-1 association. Inhibition of RhoA activity with C3 exoenzyme or by overexpression of dominant-negative RhoA(T19N) or G13 minigene unmasked a delayed increase in PI hydrolysis that was strongly inhibited by coexpression of PLC-1(E341R/D343R) or by SKF-96365. Agonist-independent capacitative Ca2+ influx induced by thapsigargin stimulated PI hydrolysis (8-fold), which was partly inhibited by nifedipine (25%) and strongly inhibited by SKF-96365 (75%) and in cells expressing PLC-1(E341R/D343R). Agonist-independent Ca2+ release or Ca2+ influx via voltage-gated Ca2+ channels stimulated only moderate PI hydrolysis (2- to 3-fold), which was abolished by PLC-1 antibody or nifedipine. We conclude that PLC-1 is activated by Gi/o-coupled receptor agonists that do not activate RhoA. The activation is preferentially mediated by Ca2+ influx via store-operated Ca2+ channels. phospholipase C; G protein  相似文献   

15.
The involvement of PKC, the isoforms of which are categorized into three subtypes: conventional (, I, II, and ), novel [, , , and µ (also known as PKD),], and atypical ( and /), in the regulation of endothelial monolayer integrity is well documented. However, isoform activity varies among different cell types. Our goal was to reveal isoform-specific PKC activity in the microvascular endothelium in response to phorbol 12-myristate 13-acetate (PMA) and diacylglycerol (DAG). Isoform activity was demonstrated by cytosol-to-membrane translocation after PMA treatment and phosphorylation of the myristoylated alanine-rich C kinase substrate (MARCKS) protein after PMA and DAG treatment. Specific isoforms were inhibited by using both antisense oligonucleotides and pharmacological agents. The data showed partial cytosol-to-membrane translocation of isoforms , I, and and complete translocation of PKC and PKD in response to PMA. Furthermore, antisense treatment and pharmacological studies indicated that the novel isoform PKC and PKD are both required for PMA- and DAG-induced MARCKS phosphorylation and hyperpermeability in pulmonary microvascular endothelial cells, whereas isoforms , I, and were dispensable with regard to these same phenomena. signal transduction; permeability; myristolated alanine-rich C kinase substrate; microvasculature; pulmonary endothelium  相似文献   

16.
Although 17-estradiol (E2) administration following trauma-hemorrhage prevents the suppression in splenocyte cytokine production, it remains unknown whether the salutary effects of 17-estradiol are mediated via estrogen receptor (ER)- or ER-. Moreover, it is unknown which signaling pathways are involved in 17-estradiol's salutary effects. Utilizing an ER-- or ER--specific agonist, we examined the role of ER- and ER- in E2-mediated restoration of T-cell cytokine production following trauma-hemorrhage. Moreover, since MAPK, NF-B, and activator protein (AP)-1 are known to regulate T-cell cytokine production, we also examined the activation of MAPK, NF-B, and AP-1. Male rats underwent trauma-hemorrhage (mean arterial pressure 40 mmHg for 90 min) and fluid resuscitation. ER- agonist propyl pyrazole triol (PPT; 5 µg/kg), ER- agonist diarylpropionitrile (DPN; 5 µg/kg), 17-estradiol (50 µg/kg), or vehicle (10% DMSO) was injected subcutaneously during resuscitation. Twenty-four hours thereafter, splenic T cells were isolated, and their IL-2 and IFN- production and MAPK, NF-B, and AP-1 activation were measured. T-cell IL-2 and IFN- production was decreased following trauma-hemorrhage, and this was accompanied with a decrease in T-cell MAPK, NF-B, and AP-1 activation. PPT or 17-estradiol administration following trauma-hemorrhage normalized those parameters, while DPN administration had no effect. Since PPT, but not DPN, administration following trauma-hemorrhage was as effective as 17-estradiol in preventing the T-cell suppression, it appears that ER- plays a predominant role in mediating the salutary effects of 17-estradiol on T cells following trauma-hemorrhage, and that such effects are likely mediated via normalization of MAPK, NF-B, and AP-1 signaling pathways. shock; MAPK; NF-B; activator protein-1; propyl pyrazole triol; diarylpropionitrile  相似文献   

17.
The purpose of this study was to 1) test the hypothesis that skeletal muscle cells (myotubes) after mechanical loading and/or injury are a source of soluble factors that promote neutrophil chemotaxis and superoxide anion (O2·) production and 2) determine whether mechanical loading and/or injury causes myotubes to release cytokines that are known to influence neutrophil responses [tumor necrosis factor- (TNF-), IL-8, and transforming growth factor-1 (TGF-1)]. Human myotubes were grown in culture and exposed to either a cyclic strain (0, 5, 10, 20, or 30% strain) or a scrape injury protocol. Protocols of 5, 10, and 20% strain did not cause injury, whereas 30% strain and scrape injury caused a modest and a high degree of injury, respectively. Conditioned media from strained myotubes promoted chemotaxis of human blood neutrophils and primed them for O2· production in a manner that was dependent on a threshold of strain and independent from injury. Neutrophil chemotaxis, but not priming, progressively increased with higher magnitudes of strain. Conditioned media only from scrape-injured myotubes increased O2· production from neutrophils. Concentrations of IL-8 and total TGF-1 in conditioned media were reduced by mechanical loading, whereas TNF- and active TGF-1 concentrations were unaffected. In conclusion, skeletal muscle cells after mechanical loading and injury are an important source of soluble factors that differentially influence neutrophil chemotaxis and the stages of neutrophil-derived reactive oxygen species production. Neutrophil responses elicited by mechanical loading, however, did not parallel changes in the release of IL-8, TGF-1, or TNF- from skeletal muscle cells. inflammation; cytokines; exercise; free radicals  相似文献   

18.
Integrin mechanotransduction is a ubiquitous biological process. Mechanical forces are transduced transmembranously by an integrin's ligand-bound extracellular domain through its -subunit's cytoplasmic domain connected to the cytoskeleton. This often culminates in the activation of tyrosine kinases directing cell responses. The delicate balance between hemostasis and thrombosis requires exquisitely fine-tuned integrin function, and balance is maintained in vivo despite that the major platelet integrin IIb3 is continuously subjected to frictional or shearing forces generated by laminar blood flow. To test the hypothesis that platelet function is regulated by the direct effects of mechanical forces on IIb3, we examined IIb3/cytoskeletal interactions in human platelets exposed to shear stress in a cone-plate viscometer. We observed that -actinin, myosin heavy chain, and Syk coimmunoprecipitate with IIb3 in resting platelets and that 120 dyn/cm2 shear stress leads to their disassociation from IIb3. Shear-induced disassociation of -actinin and myosin heavy chain from the 3 tail is unaffected by blocking von Willebrand factor (VWF) binding to glycoprotein (Gp) Ib-IX-V but abolished by blocking VWF binding to IIb3. Syk's disassociation from 3 is inhibited when VWF binding to either GpIb-IX-V or IIb3 is blocked. Shear stress-induced phosphorylation of SLP-76 and its association with tyrosine-phosphorylated adhesion and degranulation-promoting adapter protein are inhibited by blocking ligand binding to IIb3 but not by blocking ligand binding to GpIb-IX-V. Chinese hamster ovary cells expressing IIb3 with 3 truncated of its cytoskeletal binding domains demonstrate diminished shear-dependent adhesion and cohesion. These results support the hypothesis that shear stress directly modulates IIb3 function and suggest that shear-induced IIb3-mediated signaling contributes to the regulation of platelet aggregation by directing the release of constraining cytoskeletal elements from the 3-tail. platelets; mechanoreceptor; integrin; shear stress; signal transduction  相似文献   

19.
Although 17-estradiol administration following trauma-hemorrhage prevents the suppression in splenic macrophage cytokine production, it remains unknown whether the salutary effects are mediated via estrogen receptor (ER)- or ER- and which signaling pathways are involved in such 17-estradiol effects. Utilizing ER-- or ER--specific agonists, this study examined the role of ER- and ER- in 17-estradiol-mediated restoration of macrophage cytokine production following trauma-hemorrhage. In addition, since MAPK and NF-B are known to regulate macrophage cytokine production, we also examined the activation of those signaling molecules. Male rats underwent trauma-hemorrhage (mean arterial pressure of 40 mmHg for 90 min) and fluid resuscitation. The ER- agonist propyl pyrazole triol (PPT; 5 µg/kg), the ER- agonist diarylpropionitrile (DPN; 5 µg/kg), 17-estradiol (50 µg/kg), or vehicle (10% DMSO) was injected subcutaneously during resuscitation. Twenty-four hours thereafter, splenic macrophages were isolated, and their IL-6 and TNF- production and activation of MAPK and NF-B were measured. Macrophage IL-6 and TNF- production and MAPK activation were decreased, whereas NF-B activity was increased, following trauma-hemorrhage. PPT or 17-estradiol administration after trauma-hemorrhage normalized those parameters. DPN administration, on the other hand, did not normalize the above parameters. Since PPT but not DPN administration following trauma-hemorrhage was as effective as 17-estradiol in preventing the suppression in macrophage cytokine production, it appears that ER- plays the predominant role in mediating the salutary effects of 17-estradiol on macrophage cytokine production following trauma-hemorrhage and that such effects are likely mediated via normalization of MAPK but not NF-B signaling pathways. shock; mitogen-activated protein kinase; nuclear factor-B; propyl pyrazole triol; diarylpropionitrile  相似文献   

20.
ATP, a purinergic receptor agonist, has been shown to be involved in vascular smooth muscle (VSM) cell DNA synthesis and cell proliferation during embryonic and postnatal development, after injury, and in atherosclerosis. One mechanism that ATP utilizes to regulate cellular function is through activation of ERK1/2. In the present study, we provide evidence that ATP-dependent activation of ERK1/2 in VSM cells utilizes specific isoforms of the multifunctional serine/threonine kinases, PKC, and Ca2+/calmodulin-dependent protein kinase II (CaMKII) as intermediates. Selective inhibition of PKC- activity with rottlerin, or adenoviral overexpression of kinase-negative PKC-, attenuated the ATP- and phorbol 12,13-dibutyrate (PDBu)-stimulated ERK1/2 activation. Inhibition of PKC- activity with Gö-6976, or adenoviral overexpression of kinase-negative PKC-, was ineffective. Alternatively, treatment with KN-93, a selective inhibitor of CaMKII activation, or adenoviral overexpression of kinase-negative CaMKII-2, inhibited ATP-dependent activation of ERK1/2 but had no effect on PDBu- or PDGF-stimulated ERK1/2. In addition, adenoviral overexpression of dominant-negative ras (Ad.HA-RasN17) partially inhibited the ATP- and PDBu-induced activation of ERK1/2 and blocked ionomycin- and EGF-stimulated ERK1/2, and inhibition of tyrosine kinases with AG-1478, an EGFR inhibitor, or the src family kinase inhibitor PP2 attenuated ATP-stimulated ERK1/2 activation. Taken together, these data indicate that PKC- and CaMKII-2 coordinately mediate ATP-dependent transactivation of EGF receptor, resulting in increased ERK1/2 activity in VSM cells. protein kinase C-; calcium/calmodulin-dependent protein kinase II- 2; extracellular signal-regulated kinase 1/2; epidermal growth factor receptor transactivation; adenovirus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号