首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the primary effect of the eye lens obsolescence (Elo) gene of the mouse. Morphological features of the Elo lens were defined as follows: (1) deficient elongation of lens fiber cells, (2) morphological abnormality of nuclei of lens fiber cells, (3) lack of eosinophilic granules in the central fiber cells and (4) rupture of lens capsule in the posterior region. We have immunohistologically examined, by means of an in vivo BrdU incorporation system, whether or not the Elo gene regulates cell proliferation during lens development. The lens fiber cells were morphologically abnormal in day 13 embryonic Elo lens. However, there were no significant differences in morphology or cell proliferation between normal and Elo lens epithelium until day 14 of gestation. After day 15, the total cell number in the Elo lens epithelium was significantly less than that in the normal, but the total numbers of S-phase cells in the two genotypes were not significantly different. The ratio of the total S-phase cell number to the total number of lens epithelial cells may be affected by the developmental stage, but not directly by the genotype. The genotype, however, may be having a direct influence at later ages because malformation of Elo lens fiber cells must cause reduction of the total number of lens epithelial cells in older embryos. Although, at 30 days old, Elo lens cells were externally extruded through the ruptured capsule into the vitreous cavity, BrdU-labelled lens epithelial cells were detectable. To investigate whether the Elo lens phenotype is determined by its own genotype or by its cellular environment, we produced aggregation chimeras between C3H-Elo/+(C/C) and BALB/c(c/c). Most lenses of BALB/c dominant chimeras were oval in shape without the ruptured lens capsule. However, they were opaque in the center and slightly smaller in size than normal. The lenses of C3H-Elo/+ dominant chimeras were morphologically similar to the Elo lens. Although normal nuclei were regularly arranged in the anterior region, Elo-type nuclei were located in the posterior region. Immunohistological staining by using anti-C3H strain-specific antibody demonstrated that the lens fiber cells with abnormal nuclei were derived only from C3H-Elo/+, not from BALB/c. These observations suggest that the primary effect of the Elo gene in the developing lens may be specific to the fiber cell differentiation rather than to the cell proliferation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
We have discovered cell-to-cell fusion between fiber cells of adult frog lenses in situ. Stereo scanning electron microscopy (SEM) revealed fusion between neighboring fiber cells in radial cell columns (RCCs) and in the same growth ring, respectively. Cell-to-cell fusion of fiber cells in the lens produced fusion zones that in cross-section were larger and of different polygonal shapes than unfused fiber cells. The shape and sizes of fiber cells surrounding fusion zones and the alignment of RCCs were also altered. Serial sectioning through fusion zones confirmed that they were areas of cell-to-cell continuity established by the union of neighboring fiber cells as seen by SEM. Fusion zones represent a previously unrecognized intercellular pathway in the adult frog lens. Although numerous fusion zones were seen throughout the lens cortex and nucleus, cell-to-cell fusion was rarely observed to have occurred between elongating fiber cells. Interestingly, communicating junctions with an unusual ultrastructure that closely resembles the appearance of membranes in the process of fusion demonstrated in other systems were frequently seen in the region of the superficial cortex where fusion zones were most numerous. The fact that such unusual communicating junctions were not found in any other region of the lens leads us to speculate that structural changes in fiber cell communicating junctions may herald the formation of fusion zones and that the initial site of cell-to-cell fusion between fiber cells may be within communicating junctional plaques.  相似文献   

3.
In mammals, two spatially and temporally distinct waves of fiber cell differentiation are crucial steps for normal lens development. In between these phases, an anterior growth zone forms in which progenitor cells migrate circumferentially, terminally exit the cell cycle and initiate differentiation at the lens equator. Much remains unknown about the molecular pathways orchestrating these processes. Previously, the Notch signal transduction pathway was shown to be critical for anterior lens progenitor cell growth and differentiation. However, the ligand or ligand(s) that direct these events are unknown. Using conditional gene targeting, we show that Jagged1 is required for lens fiber cell genesis, particularly that of secondary fiber cells. In the absence of Jagged1, the anterior growth and equatorial transition zones fail to develop fully, with only a handful of differentiated fiber cells present at birth. Adult Jagged1 conditional mutants completely lack lenses, along with severe anterior chamber deformities. Our data support the hypothesis that Jagged1-Notch signaling conveys a lateral inductive signal, which is indispensable for lens progenitor cell proliferation and differentiation.  相似文献   

4.
The vertebrate lens is a transparent, spheroidal tissue, located in the anterior region of the eye that focuses visual images on the retina. During development, surface ectoderm associated with the neural retina invaginates to form the lens vesicle. Cells in the posterior half of the lens vesicle differentiate into primary lens fiber cells, which form the lens fiber core, while cells in the anterior half maintain a proliferative state as a monolayer lens epithelium. After formation of the primary fiber core, lens epithelial cells start to differentiate into lens fiber cells at the interface between the lens epithelium and the primary lens fiber core, which is called the equator. Differentiating lens fiber cells elongate and cover the old lens fiber core, resulting in growth of the lens during development. Thus, lens fiber differentiation is spatially regulated and the equator functions as a platform that regulates the switch from cell proliferation to cell differentiation. Since the 1970s, the mechanism underlying lens fiber cell differentiation has been intensively studied, and several regulatory factors that regulate lens fiber cell differentiation have been identified. In this review, we focus on the lens equator, where these regulatory factors crosstalk and cooperate to regulate lens fiber differentiation. Normally, lens epithelial cells must pass through the equator to start lens fiber differentiation. However, there are reports that when the lens epithelium structure is collapsed, lens fiber cell differentiation occurs without passing the equator. We also discuss a possible mechanism that represses lens fiber cell differentiation in lens epithelium.  相似文献   

5.
The ocular environment is important for the establishment and maintenance of lens growth patterns and polarity. In the anterior chamber of the eye, the aqueous humour regulates lens epithelial cell proliferation whereas in the posterior, the vitreous humour regulates the differentiation of the lens cells into fiber cells. Members of the fibroblast growth factor (FGF) growth factor family have been shown to induce lens epithelial cells to undergo cell division and differentiate into fibers, with a low dose of FGF able to induce cell proliferation (but not fiber differentiation), and higher doses required to induce fiber differentiation. Both these cellular events have been shown to be regulated by the MAPK/ERK1/2 signalling pathway. In the present study, to better understand the contribution of ERK1/2 signalling in regulating lens cell proliferation and differentiation, we characterized the ERK1/2 signalling profiles induced by different doses of FGF, and compared these to those induced by the different ocular media. Here, we show that FGF induced a dose-dependent sustained activation of ERK1/2, with both a high (fiber differentiating) dose of FGF and vitreous, stimulating and maintaining a prolonged (up to 18 hr) ERK1/2 phosphorylation profile. In contrast, a lower (proliferating) dose of FGF, and aqueous, stimulated ERK1/2 phosphorylation for only up to 6 hr. If we selectively reduce the 18 hr ERK1/2 phosphorylation profile induced by vitreous to 6 hr, by specifically blocking FGF receptor signalling, the vitreous now fails to induce lens fiber differentiation but retains the ability to induce lens cell proliferation. These findings not only provide insights into the important role that FGF plays in the different ocular media that bathe the lens, but enlighten us on some of the putative molecular mechanisms by which one specific growth factor, in this case FGF, can elicit a different cellular response in the same cell type.  相似文献   

6.
Secreted FGFR3, but not FGFR1, inhibits lens fiber differentiation   总被引:11,自引:0,他引:11  
The vertebrate lens has a distinct polarity with cuboidal epithelial cells on the anterior side and differentiated fiber cells on the posterior side. It has been proposed that the anterior-posterior polarity of the lens is imposed by factors present in the ocular media surrounding the lens (aqueous and vitreous humor). The differentiation factors have been hypothesized to be members of the fibroblast growth factor (FGF) family. Though FGFs have been shown to be sufficient for induction of lens differentiation both in vivo and in vitro, they have not been demonstrated to be necessary for endogenous initiation of fiber cell differentiation. To test this possibility, we have generated transgenic mice with ocular expression of secreted self-dimerizing versions of FGFR1 (FR1) and FGFR3 (FR3). Expression of FR3, but not FR1, leads to an expansion of proliferating epithelial cells from the anterior to the posterior side of the lens due to a delay in the initiation of fiber cell differentiation. This delay is most apparent postnatally and correlates with appropriate changes in expression of marker genes including p57(KIP2), Maf and Prox1. Phosphorylation of Erk1 and Erk2 was reduced in the lenses of FR3 mice compared with nontransgenic mice. Though differentiation was delayed in FR3 mice, the lens epithelial cells still retained their intrinsic ability to respond to FGF stimulation. Based on these results we propose that the initiation of lens fiber cell differentiation in mice requires FGF receptor signaling and that one of the lens differentiation signals in the vitreous humor is a ligand for FR3, and is therefore likely to be an FGF or FGF-like factor.  相似文献   

7.
Growth factor regulation of lens development   总被引:5,自引:0,他引:5  
Lens arises from ectoderm situated next to the optic vesicles. By thickening and invaginating, the ectoderm forms the lens vesicle. Growth factors are key regulators of cell fate and behavior. Current evidence indicates that FGFs and BMPs are required to induce lens differentiation from ectoderm. In the lens vesicle, posterior cells elongate to form the primary fibers whereas anterior cells differentiate into epithelial cells. The divergent fates of these embryonic cells give the lens its distinctive polarity. There is now compelling evidence that, at least in mammals, FGF is required to initiate fiber differentiation and that progression of this complex process depends on the synchronized and integrated action of a number of distinct growth factor-induced signaling pathways. It is also proposed that an antero-posterior gradient of FGF stimulation in the mammalian eye ensures that the lens attains and maintains its polarity and growth patterns. Less is known about differentiation of the lens epithelium; however, recent studies point to a role for Wnt signaling. Multiple Wnts and their receptors are expressed in the lens epithelium, and mice with impaired Wnt signaling have a deficient epithelium. Recent studies also indicate that other families of molecules, that can modulate growth factor signaling, have a role in regulating the ordered growth and differentiation of the lens.  相似文献   

8.
SPARC (Secreted Protein, Acidic and Rich in Cysteine) is a matricellular glycoprotein that modulates cell proliferation, adhesion, migration, and extracellular matrix (ECM) production. Although SPARC is generally abundant in embryonic tissues and is diminished in adults, we have found that the expression of SPARC in murine lens persists throughout embryogenesis and adulthood. Our previous studies showed that targeted ablation of the SPARC gene in mice results in cataract formation, a pathology attributed partially to an abnormal lens capsule. Here we provide evidence that SPARC is not a structural component of the lens capsule. In contrast, SPARC is abundant in lens epithelial cells, and newly differentiated fiber cells, with stable expression in wild-type mice up to 2 years of age. Pertubation of the lens capsule in animals lacking SPARC appears to be a consequence of the invasion of the lens cells situated beneath the capsule. Immunoreactivity for SPARC in the lens cells was uneven, with minimal reactivity in the epithelial cells immediately anterior to the equator. These epithelial cells appeared essentially noninvasive in SPARC-null mice, in comparison to the centrally located anterior epithelial cells, in which strong labeling by anti-SPARC IgG was observed. The posterior lens fibers exhibited cytoplasmic extensions into the posterior lens capsule, which was severely damaged in SPARC-null lenses. The expression of SPARC in wild-type lens cells, together with the abnormal lens capsule in SPARC-null mice, indicated that the structural integrity of the lens capsule is dependent on the matricellular protein SPARC. The effects of SPARC in the lens appear to involve regulation of lens epithelial and fiber cell morphology and functions rather than deposition as a structural component of the lens capsule.  相似文献   

9.
10.
The vertebrate ocular lens is a simple and continuously growing tissue. Growth factor-mediated receptor tyrosine kinases (RTKs) are believed to be required for lens cell proliferation, differentiation and survival. The signaling pathways downstream of the RTKs remain to be elucidated. Here, we demonstrate the important role of Ras in lens development by expressing a dominant-negative form of Ras (dn-Ras) in the lens of transgenic mice. We show that lens in the transgenic mice was smaller and lens growth was severely inhibited as compared to the wild-type lens. However, the lens shape, polarity and transparency appeared normal in the transgenic mice. Further analysis showed that cell proliferation is inhibited in the dn-Ras lens. For example, the percentage of 5-bromo-2'-deoxyuridine (BrdU)-labeled cells in epithelial layer was about 2- to 3-fold lower in the transgenic lens than in the wild-type lens, implying that Ras activity is required for normal cell proliferation during lens development. We also found a small number of apoptotic cells in both epithelial and fiber compartment of the transgenic lens, suggesting that Ras also plays a role in cell survival. Interestingly, although there was a delay in primary fiber cell differentiation, secondary fiber cell differentiation was not significantly affected in the transgenic mice. For example, the expression of beta- and gamma-crystallins, the marker proteins for fiber differentiation, was not changed in the transgenic mice. Biochemical analysis indicated that ERK activity, but not Akt activity, was significantly reduced in the dn-Ras transgenic lenses. Overall, our data imply that the RTK-Ras-ERK signaling pathway is essential for cell proliferation and, to a lesser extent, for cell survival, but not for crystallin gene expression during fiber differentiation. Thus, some of the fiber differentiation processes are likely mediated by RTK-dependent but Ras-independent pathways.  相似文献   

11.
The size of an organ must be tightly controlled so that it fits within an organism. The mammalian lens is a relatively simple organ composed of terminally differentiated, amitotic lens fiber cells capped on the anterior surface by a layer of immature, mitotic epithelial cells. The proliferation of lens epithelial cells fuels the growth of the lens, thus controling the size of the lens. We report that the Notch signaling pathway defines the boundary between proliferation and differentiation in the developing lens. The loss of Notch signaling results in the loss of epithelial cells to differentiation and a much smaller lens. We found that the Notch effector Herp2 is expressed in lens epithelium and directly suppresses p57Kip2 expression, providing a molecular link between Notch signaling and the cell cycle control machinery during lens development.  相似文献   

12.
Hippo-Yap signaling has been implicated in organ size determination via its regulation of cell proliferation, growth and apoptosis (Pan, 2007). The vertebrate lens comprises only two major cell types, lens progenitors and differentiated fiber cells, thereby providing a relatively simple system for studying size-controlling mechanisms. In order to investigate the role of Hippo-Yap signaling in lens size regulation, we conditionally ablated Yap in the developing mouse lens. Lens progenitor-specific deletion of Yap led to near obliteration of the lens primarily due to hypocellularity in the lens epithelium (LE) and accompanying lens fiber (LF) defects. A significantly reduced LE progenitor pool resulted mainly from failed self-renewal and increased apoptosis. Additionally, Yap-deficient lens progenitor cells precociously exited the cell cycle and expressed the LF marker, β-Crystallin. The mutant progenitor cells also exhibited multiple cellular and subcellular alterations including cell and nuclear shape change, organellar polarity disruption, and disorganized apical polarity complex and junction proteins such as Crumbs, Pals1, Par3 and ZO-1. Yap-deficient LF cells failed to anchor to the overlying LE layer, impairing their normal elongation and packaging. Furthermore, our localization study results suggest that, in the developing LE, Yap participates in the cell context-dependent transition from the proliferative to differentiation-competent state by integrating cell density information. Taken together, our results shed new light on Yap's indispensable and novel organizing role in mammalian organ size control by coordinating multiple events including cell proliferation, differentiation, and polarity.  相似文献   

13.
Dye Transfer Between Cells of the Lens   总被引:1,自引:0,他引:1  
Dye transfer between lens fiber cells and between lens epithelial cells and underlying fiber cells was studied using a wide dynamic range-cooled CCD camera, H2O immersion objectives and image analysis techniques. Each lens was decapsulated by a new technique which leaves the epithelial cells adherent to the lens fiber mass. Lucifer Yellow CH was injected into either single epithelial cells or single fiber cells using the standard whole cell configuration of the patch voltage clamp technique. The results demonstrate extensive dye communication between fiber cells at the lens posterior surface, anterior surface, and equatorial surface. Dye transfer between deep fiber cells was also observed. Dye transfer between ≈10% of epithelial cells and their underlying fiber cells was apparent when care was taken to yield wide dynamic range images. This was required because the relatively high concentration of dye in the epithelial cell masks the presence of much lower dye concentrations in the underlying fiber cell. A mathematical model which includes dye concentration, time, and spatial spread suggests that those epithelial cells that are coupled to an underlying fiber cell are about as well dye coupled as the epithelial cells themselves. The relatively low dye concentration in a fiber cell is due to its larger volume and diffusion of the dye along the axis of the fiber away from the fiber/epithelial junction. Received: 14 September 1995/Revised: 13 November 1995  相似文献   

14.
Insulin-like growth factor-I (IGF-I) has been implicated as a regulator of lens development. Experiments performed in the chick have indicated that IGF-I can stimulate lens fiber cell differentiation and may be involved in controlling lens polarization. To assess IGF-I activity on mammalian lens cells in vivo, we generated transgenic mice in which this factor was overexpressed from the alphaA-crystallin promoter. Interestingly, we observed no premature differentiation of lens epithelial cells. The pattern of lens polarization was perturbed, with an apparent expansion of the epithelial compartment towards the posterior lens pole. The distribution of immunoreactivity for MIP26 and p57(KIP2) and a modified pattern of proliferation suggested that this morphological change was best described as an expansion of the germinative and transitional zones. The expression of IGF-I signaling components in the normal transitional zone and expansion of the transitional zone in the transgenic lens both suggest that endogenous IGF-I may provide a spatial cue that helps to control the normal location of this domain.  相似文献   

15.
Dimensions, volumes and protein contents were measured for bovine lenses with wet weights ranging from 0.17-3.07 g (2 months gestation to 19 years post-natal). All increase in a non-linear fashion. The lens becomes flatter with age due to a more rapid increase in the equatorial plane, but the ratio of anterior to posterior sagittal distances remains constant (1.19). The radius of curvature increases from 4.9 to 15 for the anterior surface and from 4.4 to 13 for the posterior. Protein content increases more rapidly than volume resulting in an increased average protein concentration from around 18% in the early prenatal lens to nearly 50% in the 19 year old. Total protein content (TPC) was found to be related to wet weight (We) according to the equation, TPC = 0.3We1.33. It is suggested that TPC is a better parameter for describing growth than wet weight or age. The refractive index, in the equatorial plane, increases towards the centre, from 1.38 at the edge of the lens. The maximum index, in the centre, increases with lens size up to 1.474 in the largest lens studied. This corresponds to a protein concentration of 70%. In all lenses, refractive index and protein concentration gradients were superimposable when plotted from the outside towards the centre. The optical performance of the lenses was assessed by measuring the back focal length which increases gradually from 24 to 51.5 mm over the 0.17 to 3.07 g size range. This was attributed to the increased radii of curvature.  相似文献   

16.
Morphogenesis and shape of the ocular lens depend on epithelial cell elongation and differentiation into fiber cells, followed by the symmetric and compact organization of fiber cells within an enclosed extracellular matrix-enriched elastic capsule. The cellular mechanisms orchestrating these different events however, remain obscure. We investigated the role of the Rac1 GTPase in these processes by targeted deletion of expression using the conditional gene knockout (cKO) approach. Rac1 cKO mice were derived from two different Cre (Le-Cre and MLR-10) transgenic mice in which lens-specific Cre expression starts at embryonic day 8.75 and 10.5, respectively, in both the lens epithelium and fiber cells. The Le-Cre/Rac1 cKO mice exhibited an early-onset (E12.5) and severe lens phenotype compared to the MLR-10/Rac1 cKO (E15.5) mice. While the Le-Cre/Rac1 cKO lenses displayed delayed primary fiber cell elongation, lenses from both Rac1 cKO strains were characterized by abnormal shape, impaired secondary fiber cell migration, sutural defects and thinning of the posterior capsule which often led to rupture. Lens fiber cell N-cadherin/β-catenin/Rap1/Nectin-based cell–cell junction formation and WAVE-2/Abi-2/Nap1-regulated actin polymerization were impaired in the Rac1 deficient mice. Additionally, the Rac1 cKO lenses were characterized by a shortened epithelial sheet, reduced levels of extracellular matrix (ECM) proteins and increased apoptosis. Taken together, these data uncover the essential role of Rac1 GTPase activity in establishment and maintenance of lens shape, suture formation and capsule integrity, and in fiber cell migration, adhesion and survival, via regulation of actin cytoskeletal dynamics, cell adhesive interactions and ECM turnover.  相似文献   

17.
18.
The ultrastructure of the eye lens of Sepiola atlantica was investigated using scanning electron microscopy. The main lens elements in both the anterior and posterior half of the Sepiola lens are plate-like configurations with fiber-like extensions at their margins. Anteriorly the plates are plano-convex, posteriorly subspherical. The central, primordial, posterior plates are spherical with no marginal extensions. The plates are mutually anchored by protrusions and invaginations and by push-button attachments. The posterior and anterior halves are separated by a septum which consists of concentric zones of radially orientated elongated cells. The marginal extensions of the plates and the septal elements are closely associated. The unique structure of the septum makes it a good candidate for the high resistance barrier between the posterior and anterior halves of the Sepiola lens (Jacob and Duncan, 1981).  相似文献   

19.
Several families of growth factors have been identified as regulators of cell fate in the developing lens. Members of the fibroblast growth factor family are potent inducers of lens fiber differentiation. Members of the transforming growth factor beta (TGFbeta) family, particularly bone morphogenetic proteins, have also been implicated in various stages of lens and ocular development, including lens induction and lens placode formation. However, at later stages of lens development, TGFbeta family members have been shown to induce pathological changes in lens epithelial cells similar to those seen in forms of human subcapsular cataract. Previous studies have shown that type I and type II TGFbeta receptors, in addition to being expressed in the epithelium, are also expressed in patterns consistent with a role in lens fiber differentiation. In this study we have investigated the consequences of disrupting TGFbeta signaling during lens fiber differentiation by using the mouse alphaA-crystallin promoter to overexpress mutant (kinase deficient), dominant-negative forms of either type I or type II TGFbeta receptors in the lens fibers of transgenic mice. Mice expressing these transgenes had pronounced bilateral nuclear cataracts. The phenotype was characterized by attenuated lens fiber elongation in the cortex and disruption of fiber differentiation, culminating in fiber cell apoptosis and degeneration in the lens nucleus. Inhibition of TGFbeta signaling resulted in altered expression patterns of the fiber-specific proteins, alpha-crystallin, filensin, phakinin and MIP. In addition, in an in vitro assay of cell migration, explanted lens cells from transgenic mice showed impaired migration on laminin and a lack of actin filament assembly, compared with cells from wild-type mice. These results indicate that TGFbeta signaling is a key event during fiber differentiation and is required for completion of terminal differentiation.  相似文献   

20.
Specific protein synthesis in the embryonic mouse lens was studied by immunofluorescence with antisera to adult mouse lens or crystallin fractions. Positive reactions were first detected in a few cells of the lens cup 18-24 hr after contact between optic vesicle and presumptive lens ectoderm had been established. During formation of the lens vesicle a rapidly increasing fraction of cells produced crystallins. At the time of detachment of the vesicle from the surface all cells of its posterior wall showed immunofluorescence. After fiber elongation became distinct cells of the anterior epithelium began to fluoresce and shortly afterwards the entire rudiment produced crystallins. The early reactions were due entirely to the presence of alpha-crystallin. Reactions were restricted to the lens. Thus, in the mouse as in other species crystallins were detectable by immunofluorescence in vivo only after lens morphogenesis was well underway and only in the lens rudiment itself. Cells first synthesizing crystallins always had an elongated shape and their nuclei were in a basal position. A few hours later mitotic cells displayed fluorescence. Taking into account earlier found relations between cell morphology and cell cycle phase, this indicates that alpha-crystallin is first demonstrable in the S-or early G-2 phase of the cell cycle, and that the start of its synthesis does not preclude continued cell replication. It is interesting that the cellular location, cell cycle phase, and developmental stage, in which crystallins first appear, are comparable in mouse and chick embryo. Yet, entirely different proteins are involved: alpha-crystallin in the first, delta-crystallin in the latter. Implications of this for our understanding of lens induction are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号