首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temperature dependence of the heat capacity function of a recombinant streptokinase (rSK) has been studied by high-sensitivity differential scanning microcalorimetry and circular dichroism as a function of pH in low- and high-ionic strength buffers. At low ionic strength it is found that this protein, between pH 7 and 10, undergoes four reversible and independent two-state transitions during its unfolding, suggesting the existence of four domains in the native structure of the protein. This result reconciles previous conflicting reports about the number of domains of this protein obtained by differential scanning calorimetry and small-angle X-ray scattering. The number of two-state transitions decreases when the pH of the medium is decreased, without noticeable changes in its circular dichroism spectrum. A plausible localization of the four domains in the streptokinase sequences is proposed and their thermodynamic parameters are given. Increase of ionic strength to 200 mM NaCl affects positively the protein stability and confirms the existence of four reversible two-state transitions. Above 200 mM NaCl the protein stability decreases, resulting in low percentage of reversibility, and even irreversible transitions.  相似文献   

2.
The conformational state of sperm whale apomyoglobin (apoMb) was studied at neutral pH in the presence of negatively charged vesicles using near and far UV circular dichroism, tryptophan fluorescence, differential scanning microcalorimetry, and fast performance liquid chromatography. Under these conditions, the apoMb structure undergoes transition from its native to an intermediate state. In this state the protein loses its rigid native structure but retains its secondary structure. However, the environment of tryptophan residues remains rather hydrophobic. This intermediate state of apoMb shows properties similar to those of its molten globule state in solution. It is shown that apoMb can bind to negatively charged phospholipid vesicles even at neutral pH. A possible functional role of this intermediate state is discussed.  相似文献   

3.
The conformational state of sperm whale apomyoglobin (apoMb) was studied at neutral pH in the presence of negatively charged vesicles using near- and far-UV circular dichroism, tryptophan fluorescence, differential scanning microcalorimetry, and fast performance liquid chromatography. Under these conditions, the apoMb structure undergoes transition from its native to an intermediate state. In this state the protein loses its rigid native structure but retains its secondary structure. However, the environment of tryptophan residues remains rather hydrophobic. This intermediate state of apoMb shows properties similar to those of its molten globule state in solution. It is shown that apoMb can bind to negatively charged phospholipid vesicles even at neutral pH. A possible functional role of this intermediate state is discussed.  相似文献   

4.
The influence of model negatively charged membranes on the sperm whale holomyoglobin structure at pH 6.2 has been investigated by different techniques (far and near UV circular dichroism, tryptophan fluorescence, absorbance at Soret band, differential scanning microcalorimetry and fast performance liquid chromatography). It is shown that the holomyoglobin structure undergoes a conformational transition from the native to intermediate state analogous to its apo-form. This state is characterized by the absence of a rigid tertiary structure and the native heme environment. At the same time, the content of alpha-helical secondary structure remains almost native. To change the holomyoglobin structure similarly to that of its apo-form in the presence of membranes, a higher molar phospholipids/protein ratio is required. The properties of holomyoglobin in the presence of negatively charged membranes resemble those of the molten globule state of its apo-form protein in aqueous solution. A possible functional role of the discovered non-native myoglobin state is discussed.  相似文献   

5.
The denaturation of immunoglobulin G was studied by different calorimetric methods and circular dichroism spectroscopy. The thermogram of the immunoglobulin showed two main transitions that are a superimposition of distinct denaturation steps. It was shown that the two transitions have different sensitivities to changes in temperature and pH. The two peaks represent the F(ab) and F(c) fragments of the IgG molecule. The F(ab) fragment is most sensitive to heat treatment, whereas the F(c) fragment is most sensitive to decreasing pH. The transitions were independent, and the unfolding was immediately followed by an irreversible aggregation step. Below the unfolding temperature, the unfolding is the rate-determining step in the overall denaturation process. At higher temperatures where a relatively high concentration of (partially) unfolded IgG molecules is present, the rate of aggregation is so fast that IgG molecules become locked in aggregates before they are completely denatured. Furthermore, the structure of the aggregates formed depends on the denaturation method. The circular dichroism spectrum of the IgG is also strongly affected by both heat treatment and low pH treatment. It was shown that a strong correlation exists between the denaturation transitions as observed by calorimetry and the changes in secondary structure derived from circular dichroism. After both heat- and low-pH-induced denaturation, a significant fraction of the secondary structure remains.  相似文献   

6.
We studied influence of heating, ethanol and sodium azide on the structural and conformational changes of the alcohol oxidase from yeast Hansenula polymorpha. The increase of fluorescence of alcohol oxidase -cofactor, flavin adenine dinucleotide, was revealed when heated to 60 degrees C while the enzymatic activity of alcohol oxidase remained unchanged. Differential scanning microcalorimetry revealed that ethanol stabilized the protein structure and increased the temperature of melting, Based on the data of circular dichroism, we concluded that the percentage of helicities in the secondary structure of alcohol oxidase was not influenced by both ethanol and sodium azide, however ethanol significantly modified the circular dichroism spectrum associated with the tertiary structure of alcohol oxidase.  相似文献   

7.
Structural transitions occurring during the alkalin titration of human somatotropin, human choriomammotropin, and ovine prolactin have been investigated by means of circular dichroism and fluorescence emission spectra. Human somatotropin exhibited an isodichroic point at 287 nm, with all spectral changes being reversed upon back titration from pH 12.50 to pH 8.0. Fluorescence quenching as a function of pH produced a simple sigmoidal curve. Human choriomammotropin exhibited an isodichroic point at 288 nm. The fluorescence and circular dichroism spectra of this protein were found to be reversible between pH 8.0 and 11.0. However, on titration above pH 11, the isodichroic point and the reversibility of the circular dichroism spectra were lost. This conformational transition was accompanied by a sharp increase in fluorescence quantum yield. The circular dichroism spectra of ovine prolactin showed essentially no change on titration to pH 11.0. However, between pH 11.0 and 12.0, a sharp conformational transition was observed similar to that seen in human choriomammotropin, but not exhibiting the same increase in fluorescence quantum yield. The fluorescence titration of prolactin was found to be essentially reversible upon back titration from pH 12.5, although the circular dichroism spectra were not reversible from this pH.  相似文献   

8.
A major protein of the endotoxin from Yersinia pseudotuberculosis was isolated from the complex lipid A--protein by treatment with SDS and triton X-100 followed by gel-chromatography on Sephacryl S-300. Protein has apparent molecular mass 40 kDa and alanine as N-terminal amino acid residue. CD and IR spectroscopy conformational changes of the protein molecule in the process of its isolation. The thermal and pH stabilities of the protein were investigated by the methods of intrinsic fluorescence and differential scanning microcalorimetry. The isolated protein revealed two thermal transitions (at 30-35 and 50-55 degrees C), which depend on Ca2+ concentration.  相似文献   

9.
We studied the influence of heating, ethanol, and sodium azide on the structural and conformational changes in the alcohol oxidase from yeast Hansenula polymorpha. An increase in fluorescence of the alcohol oxidase cofactor, flavine adenine dinucleotide, was revealed upon heating to 60°C while the enzymatic activity of alcohol oxidase was preserved. Differential scanning microcalorimetry revealed that ethanol stabilized the protein structure and increased the melting temperature. Based on the data of circular dichroism, we concluded that the percentage of helicity in the secondary structure of alcohol oxidase was not influenced by ethanol or sodium azide, but ethanol significantly modified the circular dichroism spectrum associated with the tertiary structure of alcohol oxidase.  相似文献   

10.
Cold denaturation of myoglobin   总被引:24,自引:0,他引:24  
The stability of the structure of sperm whale metmyoglobin has been studied in various solutions, in the temperature range -8 degrees C to 100 degrees C, by scanning microcalorimetry, light absorption, circular dichroism, nuclear magnetic resonance spectroscopy and viscosimetry. It has been shown that in 10 mM-sodium acetate solutions (pH 3.5 to 3.9) the protein molecule undergoes a reversible conformational transition into a non-compact disordered state not only when the solution is heated above room temperature but also when it is cooled. In this state the protein does not have a tertiary structure, although it retains some residual ellipticity, which may be caused by the fluctuating alpha-helical conformation of the unfolded polypeptide chain. The disruption of the native protein structure both on cooling (cold-denaturation) and on heating (heat-denaturation) proceeds in an "all-or-none" manner, with a significant and similar increase of the protein heat capacity, but with inverse enthalpic and entropic effects: the enthalpy and entropy of the protein molecule decrease during cold-denaturation and increase during heat-denaturation.  相似文献   

11.
G Russo  D Vincenti  R Ragone  P Stiuso  G Colonna 《Biochemistry》1992,31(38):9279-9287
A protein fragment (M(r) approximately 9000) isolated from the cortex of nonpathological calf lenses has been structurally characterized. The polypeptide structure was well organized (39% alpha-helix, 33% beta-structure, and 28% remainder) according to the far-ultraviolet circular dichroism. The fluorescence was heterogeneous for the presence of two tryptophan classes. Structure perturbation by pH and denaturant revealed cooperative structural transitions which are characteristics of a globular organization. A single-step unfolding curve induced by Gdn-HCl (midpoint = 1.38 M Gdn-HCl) was monitored by emission maximum shift as well as by far-ultraviolet circular dichroism. This transition was analyzed as a two-state process. The standard free energy of unfolding in the absence of the denaturant, delta Go (H2O), was found to be 10.80 +/- 0.25 kJ/mol at 20 degrees C and pH 7.4. The fragment also shows an unusual thermal resistance. Its structure was unperturbed up to 90 degrees C according to the fluorescence and dichroism. This last property, its peculiar amino acid composition, and the sequence of a small segment are shared, among crystallins, only with the N-terminal region of the alpha-crystallin B chain. A search for proteolysis sites along the alpha-crystallin B chain sequence revealed that it possesses specific points for proteinase attack. These sites are particularly exposed and clustered in a very flexible region in the middle of the protein sequence. They are also well represented in the C-terminal extension of the molecule while a few are buried in the N-terminal region.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The acid denaturation of human glutathione transferase P1-1 (hGSTP1-1) has been performed to investigate the unfolding intermediates of the protein and their possible involvement in the refolding mechanism. The acid-induced structures of GSTP1-1 have been characterized by activity, gel filtration, intrinsic fluorescence and far-u.v. circular dichroism (CD) techniques. Because of the non-identity of the different transitions monitored, the acid denaturation of hGSTP1-1 appears to be a multistep process during which several intermediates coexist in equilibrium. The dependence of inactivation on the protein concentration, as well as gel-filtration experiments, indicate that the inactivation transition, centred at about pH 4.0, corresponds to the monomerization of the protein. At pH 2.0, when the enzyme is completely inactive, the protein retains a small, but significant, amount of secondary structure. This means that the dimeric arrangement of the molecule is important for maintaining the native-like secondary structure of the monomer. The results show that, at low pH, the compact state of the GST monomer, even upon the addition of salts, does not possess native-like secondary structure as described for many monomeric proteins (molten globule). In the presence of physiological concentrations of salts, the protein solution at pH 2.0 leads to a dead-end aggregation process, suggesting that this compact state cannot represent a productive intermediate of the refolding pathway.  相似文献   

13.
Thermal unfolding of monomeric and dimeric beta-lactoglobulins.   总被引:1,自引:0,他引:1  
The thermal stabilities of dimeric bovine beta-lactoglobulin and monomeric equine beta-lactoglobulin were investigated at neutral pH by means of differential scanning calorimetry, circular dichroism, tryptophan fluorescence, and by binding of an hydrophobic probe. Differential scanning calorimetry showed the presence of two structural domains with different thermal stabilities in both proteins. Thermodynamic analysis of the calorimetric signal revealed that the two domains unfold independently according to a mechanism where an equilibrium step is followed by an irreversible transition. The spectroscopic data supported this model and allowed recognition of the structural regions corresponding to the more thermally stable domain. The differences in thermal stability between the two proteins can be primarily ascribed to the properties of the less stable domain.  相似文献   

14.
The thermal denaturation of ribonuclease A has been studied by differential scanning calorimetry in the presence of 4-chlorobutan-1-ol. The thermal transitions were observed to be reversible at pH 5.5 in the presence of low concentration (up to 50 mM) of the alcohol, irreversible in the intermediate (50 mM < c < mM) and again reversible in the presence of 250 mM and higher concentrations of 4-chlorobutan-1-ol. In the presence of 50 mM 4-chlorobutan-1-ol, ribonuclease A is present in two conformational states unfolding at different temperatures. The reversible thermal transitions have been fitted to a two-state native-to-denatured mechanism. Irreversible thermal transitions have been analyzed according to two-state irreversible native-to-denatured kinetic model. Using the irreversible model, rate constant as a function of temperature and energy of activation of the irreversible process have been calculated. Circular dichroism and fluorescence spectroscopic results corroborate the DSC observations and indicate a protein conformation with poorly defined tertiary structure and high content of secondary structure in the presence of 50 mM 4-chlorobutan-1-ol at a temperature corresponding to the second transition. Similar results have been observed at pH 3.9.  相似文献   

15.
Bovine seminal ribonuclease (BS-RNase) is a dimeric protein with two identical subunits linked by two disulfide bridges, each subunit showing 80% of sequence identity with pancreatic RNase A. BS-RNase exists in two different quaternary conformations in solution: the MxM form, in which each subunit exchanges its alpha-helical N-terminal segment with its partner, and the M=M form with no exchange. By differential scanning microcalorimetry (DSC), the denaturation of the two dimeric forms of BS-RNase was found to be more complex than a simple two-state process. Monomeric derivatives of the dimeric protein follow instead a simple two-state mechanism, but are distinctly less stable than RNase A. The three-state N if I if D denaturation process of the two quaternary isoforms was interpreted by identifying in the dimers a central highly structured core, enclosing the covalently bonded subunit interface, which unfolds only after the periphery (mainly the N-terminal peptide) unfolds. Circular dichroism spectra of the two forms in the far-ultraviolet region show large differences between the secondary structure of the isoforms and that of the native BS-RNase mixture at equilibrium. This has been attributed to the presence in the equilibrium mixture of intermediate forms with displaced and disordered N-terminal alpha-helical segments.  相似文献   

16.
Chlorite dismutases (Cld) are unique heme b containing oxidoreductases that convert chlorite to chloride and dioxygen. Recent phylogenetic and structural analyses demonstrated that these metalloproteins significantly differ in oligomeric and subunit structure. Here we have analyzed two representatives of two phylogenetically separated lineages, namely pentameric Cld from Candidatus "Nitrospira defluvii" and dimeric Cld from Nitrobacter winogradskyi having a similar enzymatic activity at room temperature. By application of a broad set of techniques including differential scanning calorimetry, electronic circular dichroism, UV-vis and fluorescence spectroscopy the temperature-mediated and chemical unfolding of both recombinant proteins were analyzed. Significant differences in thermal and conformational stability are reported. The pentameric enzyme is very stable between pH 3 and 10 (T(m)=92°C at pH 7.0) and active at high temperatures thus being an interesting candidate for bioremediation of chlorite. By contrast the dimeric protein starts to unfold already at 53°C. The observed unfolding pathways are discussed with respect to the known subunit structure and subunit interaction.  相似文献   

17.
The thermal transitions in different forms of bovine brain calmodulin (0, 1, 2, 3 and 4 bound Ca2+ ions per molecule) have been studied by means of microcalorimetry, intrinsic tyrosine fluorescence, circular dichroism and infrared spectroscopy. The heating of the apoprotein from 5 to 110 degrees C induces at least three unfolding transitions. The heating of Ca2+-loaded calmodulin causes at least two structural transitions, one of which occurs at relatively low temperatures, from approx. 30 to approx 50 degrees C. The binding of the biologically significant Ca2+, Mg2+, Na+ and K+ ions has been measured at 12, 20, 28, 37 and 50 degrees C by means of the fluorescence method. The values of the binding parameters for these cations do not depend on temperature within the range 12 to 50 degrees C. It has been proposed that the temperature independence of the metal-ion-binding properties of calmodulin is achieved due to the temperature-induced structural changes, which adjust the protein conformation in such a way that the protein-binding parameters remain constant.  相似文献   

18.
The influence of the ionic strength of solution on the DNA molecule protonation was studied by means of circular dichroism (CD), spectrophotometric and potentiometric titration methods over a wide range of the supporting electrolyte concentrations [( NaCl] = 0.0005 divided by 4 M). Consideration of the obtained CD spectra shown that the acidation of the solution induces two cooperative structural transitions in the double stranded DNA molecule in the pre-denaturation pH region. Further decrease in the solution pH results in acidic melting of the DNA molecule. Analysis of the potentiometric data shows that diluted DNA solutions exhibit marked buffer capacity at pH greater than 4.2. A concept of local pH dependent on the electrostatic potential in the vicinity of the polyion was used for interpreting the obtained results. A phase diagram, which describes the polymorphic transformations of the protonated macromolecule, was constructed in terms of pHloc and -log[Na+]. Consideration of this phase diagram allows to hypothesize that: 1) in the neutral diluted DNA solution with a very low supporting electrolyte content the macromolecule exists in a polymorphic state; 2) at [NaCl] greater than or equal to 0.001 M the acid-base equilibrium in the DNA molecule is invariant in respect to the ionic strength of the solution.  相似文献   

19.
The fluorescence probe ANS(8-anilino-1-naphthalenesulfonic acid) was employed as a reporter group molecule for circular dichroism and fluorescence measurements in order to investigate the effects of stearic acid and sodium dodecylsulfate on the conformation of bovine and human serum albumin. Stearate as well as dodecylsulfate displaces ANS from the binding to both albumins. Besides this displacement, stearate and dodecylsulfate influence the fluorescence properties and the extrinsic Cotton effects on ANS bound to both albumins. It is suggested that the origin of these effects is a microdisorganization of the albumin structure, provoked by the binding of stearate and sodium dodecylsulfate. Each of the four extrinsic CD bands of bound ANS was influenced in a different manner by the addition of stearate and dodecylsulfate. Using the data of the fluorescence measurements and of the circular dichroism measurements it was possible to differentiate the effects of one ligand on both albumins and of both ligands on one albumin more efficiently than would have been possible using one of the two methods alone. It is suggested that the use of ANS as a reporter group molecule for fluorescence and circular dichroism measurements is a very good tool to detect small changes in the environment of ligand binding sites on protein molecules.  相似文献   

20.
Thermodynamic study of the apomyoglobin structure   总被引:18,自引:0,他引:18  
Sperm whale apomyoglobin has been studied thermodynamically in solutions with different pH and temperature by scanning microcalorimetry, viscosimetry, nuclear magnetic resonance and circular dichroism spectrometry, and by electrometric and calorimetric titration. It has been shown that apomyoglobin in solutions with pH close to neutral has a compact and unique spatial structure with an extended hydrophobic core. This structure is maximally stable at about 30 degrees C and breaks down reversibly both upon heating or cooling from this temperature. The process of breakdown of this structure is highly co-operative and can be regarded as a transition between two macroscopic states of protein, the native and denatured states. In contrast to the native state, which is specified by definite values of compactness and ellipticity, the compactness and ellipticity of the denatured state of apomyoglobin depend strongly on pH; with a decrease of pH below 4.0, these parameters gradually approach the values of the random coil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号