首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Coenzyme A (CoA) biosynthesis is initiated by pantothenate kinase (PanK) and CoA levels are controlled through differential expression and feedback regulation of PanK isoforms. PanK2 is a mitochondrial protein in humans, but comparative genomics revealed that acquisition of a mitochondrial targeting signal was limited to primates. Human and mouse PanK2 possessed similar biochemical properties, with inhibition by acetyl-CoA and activation by palmitoylcarnitine. Mouse PanK2 localized in the cytosol, and the expression of PanK2 was higher in human brain compared to mouse brain. Differences in expression and subcellular localization should be considered in developing a mouse model for human PanK2 deficiency.  相似文献   

3.
The PANK2 gene encodes the human pantothenate kinase 2 protein isoforms, and PANK2 mutations are linked to pantothenate kinase-associated neurodegeneration. Two PanK2 protein forms are proteolytically processed to form a mitochondrially localized, mature PanK2. Another isoform arose from a proposed initiation at a leucine codon and was not processed further. The fifth isoform was postulated to arise from an alternative splicing event and was found to encode an inactive protein. Fourteen mutant PanK2 proteins with single amino acid substitutions, associated with either early or late onset disease, were evaluated for activity. The PanK2(G521R), the most frequent mutation in pantothenate kinase-associated neurodegeneration, was devoid of activity and did not fold properly. However, nine of the mutant proteins associated with disease possessed catalytic activities that were indistinguishable from wild type, including the frequently encountered PanK2(T528M) missense mutation. PanK2 was extremely sensitive to feedback inhibition by CoA thioesters (IC50 values between 250 and 500 nM), and the regulation of the active PanK2 mutants was comparable with that of the wild-type protein. Coexpression of the PanK2(G521R) and wild-type PanK2 did not interfere with wild-type enzyme activity, arguing against a dominant negative effect of the PanK2(G521R) mutation in heterozygous patients. These data described the unique biochemical features of the PanK2 isoforms and suggested that catalytic defects may not be the sole cause for the neurodegenerative phenotype.  相似文献   

4.
Pantothenate kinase catalyzes a key regulatory step in coenzyme A biosynthesis, and there are four mammalian genes that encode isoforms of this enzyme. Pantothenate kinase isoform PanK3 is highly related to the previously characterized PanK1beta isoform (79% identical, 91% similar), and these two almost identical proteins are expressed most highly in the same tissues. PanK1beta and PanK3 had very similar molecular sizes, oligomeric form, cytoplasmic cellular location, and kinetic constants for ATP and pantothenate. However, these two PanK isoforms possessed distinct regulatory properties. PanK3 was significantly more sensitive to feedback regulation by acetyl-CoA (IC50 = 1 microm) than PanK1beta (IC50 = 10 microm), and PanK3 was stringently regulated by long-chain acyl-CoA (IC50 = 2 microm), whereas PanK1beta was not. Domain swapping experiments localized the difference in the two proteins to a 48-amino-acid domain, where they are the most divergent. Consistent with these more stringent regulatory properties, metabolic labeling experiments showed that coenzyme A (CoA) levels in cells overexpressing PanK3 were lower than in cells overexpressing an equivalent amount of PanK1beta. Thus, the distinct regulatory properties exhibited by the family of the pantothenate kinases allowed the rate of CoA biosynthesis to be controlled by regulatory signals from CoA thioesters involved in different branches of intermediary metabolism.  相似文献   

5.
Coenzyme A is synthesised from pantothenate via five enzyme-mediated steps. The first step is catalysed by pantothenate kinase (PanK). All PanKs characterised to date form homodimers. Many organisms express multiple PanKs. In some cases, these PanKs are not functionally redundant, and some appear to be non-functional. Here, we investigate the PanKs in two pathogenic apicomplexan parasites, Plasmodium falciparum and Toxoplasma gondii. Each of these organisms express two PanK homologues (PanK1 and PanK2). We demonstrate that PfPanK1 and PfPanK2 associate, forming a single, functional PanK complex that includes the multi-functional protein, Pf14-3-3I. Similarly, we demonstrate that TgPanK1 and TgPanK2 form a single complex that possesses PanK activity. Both TgPanK1 and TgPanK2 are essential for T. gondii proliferation, specifically due to their PanK activity. Our study constitutes the first examples of heteromeric PanK complexes in nature and provides an explanation for the presence of multiple PanKs within certain organisms.  相似文献   

6.
Pantothenate kinase (PanK) is the key regulatory enzyme in the CoA biosynthetic pathway in bacteria and is thought to play a similar role in mammalian cells. We examined this hypothesis by identifying and characterizing two murine cDNAs that encoded PanK. The two cDNAs were predicted to arise from alternate splicing of the same gene to yield different mRNAs that encode two isoforms (mPanK1alpha and mPanK1beta) with distinct amino termini. The predicted protein sequence of mPanK1 was not related to bacterial PanK but exhibited significant similarity to Aspergillus nidulans PanK. mPanK1alpha was most highly expressed in heart and kidney, whereas mPanK1beta mRNA was detected primarily in liver and kidney. Pantothenate was the most abundant pathway component (42.8%) in normal cells providing clear evidence that pantothenate phosphorylation was a rate-controlling step in CoA biosynthesis. Enhanced mPanK1beta expression eliminated the intracellular pantothenate pool and triggered a 13-fold increase in intracellular CoA content. mPanK1beta activity in vitro was stimulated by CoA and strongly inhibited by acetyl-CoA illustrating that differential modulation of mPanK1beta activity by pathway end products also contributed to the management of CoA levels. These data support the concept that the expression and/or activity of PanK is a determining factor in the physiological regulation of the intracellular CoA concentration.  相似文献   

7.
8.
The pantothenate kinases (PanK) catalyze the first and the rate-limiting step in coenzyme A (CoA) biosynthesis and regulate the amount of CoA in tissues by differential isoform expression and allosteric interaction with metabolic ligands. The four human and mouse PanK proteins share a homologous carboxy-terminal catalytic domain, but differ in their amino-termini. These unique termini direct the isoforms to different subcellular compartments. PanK1α isoforms were exclusively nuclear, with preferential association with the granular component of the nucleolus during interphase. PanK1α also associated with the perichromosomal region in condensing chromosomes during mitosis. The PanK1β and PanK3 isoforms were cytosolic, with a portion of PanK1β associated with clathrin-associated vesicles and recycling endosomes. Human PanK2, known to associate with mitochondria, was specifically localized to the intermembrane space. Human PanK2 was also detected in the nucleus, and functional nuclear localization and export signals were identified and experimentally confirmed. Nuclear PanK2 trafficked from the nucleus to the mitochondria, but not in the other direction, and was absent from the nucleus during G2 phase of the cell cycle. The localization of human PanK2 in these two compartments was in sharp contrast to mouse PanK2, which was exclusively cytosolic. These data demonstrate that PanK isoforms are differentially compartmentalized allowing them to sense CoA homeostasis in different cellular compartments and enable interaction with regulatory ligands produced in these same locations.  相似文献   

9.
Pantothenate kinase (PanK) catalyzes the transformation of pantothenate to 4′-phosphopantothenate, the first committed step in coenzyme A biosynthesis. While numerous pantothenate antimetabolites and PanK inhibitors have been reported for bacterial type I and type II PanKs, only a few weak inhibitors are known for bacterial type III PanK enzymes. Here, a series of pantothenate analogues were synthesized using convenient synthetic methodology. The compounds were exploited as small organic probes to compare the ligand preferences of the three different types of bacterial PanK. Overall, several new inhibitors and substrates were identified for each type of PanK.  相似文献   

10.
Duration of surgical general anaesthesia is associated with severe brain injury and neurological deficits. The specific mechanisms underlying post‐general anaesthesia brain injury, however, still remain to be elucidated. Herein, we explore the role of microRNA‐214 (miR‐214) in the occurrence of brain injury after general anaesthesia and its underlying mechanism. Hippocampal tissues and neurons were isolated from rats exposed to 2% sevoflurane. TUNEL stains reflect hippocampal neuron apoptosis. Cultured hippocampal neurons stained with JC‐1 and MitoTracker dyes were imaged by fluorescence microscope to visualize changes of mitochondrial membrane potential and mitochondrial fusion. Mitochondrial function was evaluated. Mitofusin 2 (Mfn2) binding to miR‐214 or pyruvate kinase M2 (Pkm2) was confirmed by co‐immunoprecipitation, immunofluorescence, dual luciferase reporter gene and RNA immunoprecipitation assays. After exposure to 2% sevoflurane, up‐regulated miR‐214 expression and impaired interaction between Mfn2 and Pkm2 were found in rat hippocampal tissues. Rats exposed to 2% sevoflurane also experienced neuronal injury, mitochondrial defects and deficits in the brain‐derived neurotrophic factor (Bdnf) signalling. miR‐214 was shown to target Mfn2 by impairing its binding with Pkm2. Inhibiting miR‐214 expression using its specific inhibitor improved mitochondrial membrane potential, enhanced mitochondrial fusion, maintained mitochondrial function, restored interaction between Mfn2 and Pkm2, and activated the Bdnf signalling in cultured hippocampal neurons. Adenovirus infection of miR‐214 inhibitor reduced neuron apoptosis and maintained mitochondrial function in the hippocampus of rats exposed to 2% sevoflurane. Taken together, the study demonstrates inhibition of miR‐214 is cerebral protective against brain injury following general anaesthesia.  相似文献   

11.
Pantothenate kinase (PanK) catalyzes the first step in the biosynthesis of the essential and ubiquitous cofactor coenzyme A (CoA) in all organisms. Here, we report the identification, cloning, and characterization of panK-sp from Streptomyces peucetius ATCC 27952. The gene encoded a protein of 332 amino acids with a calculated molecular mass of 36.8 kDa and high homology with PanK from S. avermitilis and S. coelicolor A3(2). To elucidate the putative function of PanK-sp, it was cloned into pET32a(+) to construct pPKSP32, and the PanK-sp was then expressed in E. coli BL21(DE3) as a His-tag fusion protein and purified by immobilized metal affinity chromatography. The enzyme assay of PanK-sp was carried out as a coupling assay. The gradual decrease in NADH concentration with time clearly indicated the phosphorylating activity of PanK-sp. Furthermore, the ca. 1.4-fold increase of DXR and the ca. 1.5-fold increase of actinorhodin by in vivo overexpression of panK-sp, constructed in pIBR25 under the control of a strong ermE* promoter, established its positive role in secondary metabolite production from S. peucetius and S. coelicolor, respectively.  相似文献   

12.
Pantothenate kinase (PanK) catalyzes the first step in the biosynthesis of the essential and ubiquitous cofactor coenzyme A (CoA) in all organisms. Two well characterized isoforms of the enzyme are known: a prokaryotic PanK that predominates in eubacteria and a eukaryotic isoform that has primarily been characterized from mammalian and plant sources. Curiously, the genomes of certain pathogenic bacteria, including Helicobacter pylori and Pseudomonas aeruginosa, do not contain a PanK similar to either isoform, although these organisms possess all the other biosynthetic machinery required for CoA production. In this study we cloned, overexpressed and characterized an enzyme from Bacillus subtilis and its homologue from H. pylori and show that they catalyze the ATP-dependent phosphorylation of pantothenate. These enzymes do not share sequence homology with any known PanK, and unlike the bacterial and eukaryotic PanK isoforms their activity is not regulated by either CoA or acetyl-CoA. They also do not accept the pantothenic acid antimetabolite N-pentylpantothenamide as a substrate or are inhibited by it. Taken together, these results point to the identification of a third distinct isoform of PanK that accounts for the only known activity of the enzyme in pathogens such as H. pylori and P. aeruginosa.  相似文献   

13.
A panel of rat x mouse cell hybrids was used in the chromosomal mapping of the rat dihydrofolate reductase (DHFR) gene. It was determined that the probe hybridized to gene sequences on two different chromosomes (Nos. 2 and 4), possibly representing the active gene and a pseudogene. Hybridization of the DHFR probe to DNA from a methotrexate resistant rat cell line revealed that the gene on chromosome 2 was amplified, but not the gene on chromosome 4. This result was taken to suggest that the active DHFR gene is located on rat chromosome 2 and that the sequence on chromosome 4 is a pseudogene.  相似文献   

14.
15.
Pantothenate kinase (PanK) catalyzes the first step in the five-step universal pathway of coenzyme A (CoA) biosynthesis, a key transformation that generally also regulates the intracellular concentration of CoA through feedback inhibition. A novel PanK protein encoded by the gene coaX was recently identified that is distinct from the previously characterized type I PanK (exemplified by the Escherichia coli coaA-encoded PanK protein) and type II eukaryotic PanKs and is not inhibited by CoA or its thioesters. This type III PanK, or PanK-III, is widely distributed in the bacterial kingdom and accounts for the only known PanK in many pathogenic species, such as Helicobacter pylori, Bordetella pertussis, and Pseudomonas aeruginosa. Here we report the first crystal structure of a type III PanK, the enzyme from Thermotoga maritima (PanK(Tm)), solved at 2.0-A resolution. The structure of PanK(Tm) reveals that type III PanKs belong to the acetate and sugar kinase/heat shock protein 70/actin (ASKHA) protein superfamily and that they retain the highly conserved active site motifs common to all members of this superfamily. Comparative structural analysis of the PanK(Tm) active site configuration and mutagenesis of three highly conserved active site aspartates identify these residues as critical for PanK-III catalysis. Furthermore, the analysis also provides an explanation for the lack of CoA feedback inhibition by the enzyme. Since PanK-III adopts a different structural fold from that of the E. coli PanK -- which is a member of the "P-loop kinase"superfamily -- this finding represents yet another example of convergent evolution of the same biological function from a different protein ancestor.  相似文献   

16.
A set of novel pantothenamide-type analogues of the known Staphylococcus aureus pantothenate kinase (SaPanK) inhibitors, N-pentyl, and N-heptylpantothenamide, was synthesized in three series. The first series of analogues (1-3) were designed as molecular probes of the PanK binding site to elucidate important structure-activity relationships (SAR). The second series of analogues (4-16) were designed using structural information obtained from the Escherichia coli PanK (EcPanK) structure by targeting the pantothenate binding site and the adjacent phenylalanine-lined lipophilic pocket. Insight into the antimicrobial effect of N-pentylpantothenamide (N5-Pan) through its conversion to the antimetabolite ethyldethia-CoA and further incorporation into an inactive acyl carrier protein analogue drove the development of the third series of analogues (17-25) to enhance this effect using substrate-like substitutions. Each of the analogues was screened for enzyme inhibition activity against a panel of pantothenate kinases consisting of EcPanK, Aspergillus nidulans (AnPanK), SaPanK, and the murine isoform (MmPanK1alpha). Series 1 demonstrated only modest inhibitory activity, but did reveal some important SAR findings including stereospecific binding. Series 2 demonstrated a much higher inhibition rate for the entire series and significant inhibition was seen with analogues containing alkyl substituents. Series 3 demonstrated the most preferential inhibition profile, with the highest inhibitory activity against the SaPanK and MmPanK1alpha. The MmPanK1alpha protein was inhibited by a broad spectrum of the compounds, whereas the E. coli enzyme showed greater selectivity. The overall activity data from these analogues suggest a complex and non-enzyme specific SAR for pantothenamide substrate/inhibitors of the different PanK enzymes.  相似文献   

17.
Yang K  Strauss E  Huerta C  Zhang H 《Biochemistry》2008,47(5):1369-1380
Pantothenate kinase (PanK) catalyzes the first step of the universal five-step coenzyme A (CoA) biosynthetic pathway. The recently characterized type III PanK (PanK-III, encoded by the coaX gene) is distinct in sequence, structure and enzymatic properties from both the long-known bacterial type I PanK (PanK-I, exemplified by the Escherichia coli CoaA protein) and the predominantly eukaryotic type II PanK (PanK-II). PanK-III enzymes have an unusually high Km for ATP, are resistant to feedback inhibition by CoA, and are unable to utilize the N-alkylpantothenamide family of pantothenate analogues as alternative substrates, thus making type III PanK ineffective in generating CoA analogues as antimetabolites in vivo. Previously, we reported the crystal structure of the PanK-III from Thermotoga maritima and identified it as a member of the "acetate and sugar kinase/heat shock protein 70/actin" (ASKHA) superfamily. Here we report the crystal structures of the same PanK-III in complex with one of its substrates (pantothenate), its product (phosphopantothenate) as well as a ternary complex structure of PanK-III with pantothenate and ADP. These results are combined with isothermal titration calorimetry experiments to present a detailed structural and thermodynamic characterization of the interactions between PanK-III and its substrates ATP and pantothenate. Comparison of substrate binding and catalytic sites of PanK-III with that of eukaryotic PanK-II revealed drastic differences in the binding modes for both ATP and pantothenate substrates, and suggests that these differences may be exploited in the development of new inhibitors specifically targeting PanK-III.  相似文献   

18.
Pantothenate kinase (PanK) is a key regulatory enzyme in the coenzyme A (CoA) biosynthetic pathway and catalyzes the phosphorylation of pantothenic acid to form phosphopantothenate. CoA is a feedback inhibitor of PanK activity by competitive binding to the ATP site. The structures of the Escherichia coli enzyme, in complex with a nonhydrolyzable analogue of ATP, 5'-adenylimido-diphosphate (AMPPNP), or with CoA, were determined at 2.6 and 2.5 A, respectively. Both structures show that two dimers occupy an asymmetric unit; each subunit has a alpha/beta mononucleotide-binding fold with an extensive antiparallel coiled coil formed by two long helices along the dimerization interface. The two ligands, AMPPNP and CoA, associate with PanK in very different ways, but their phosphate binding sites overlap, explaining the kinetic competition between CoA and ATP. Residues Asp(127), His(177), and Arg(243) are proposed to be involved in catalysis, based on modeling of the pentacoordinate transition state. The more potent inhibition by CoA, compared with the CoA thioesters, is explained by a tight interaction of the CoA thiol group with the side chains of aromatic residues, which is predicted to discriminate against the CoA thioesters. The PanK structure provides the framework for a more detailed understanding of the mechanism of catalysis and feedback regulation of PanK.  相似文献   

19.
The assembly of functional holoenzymes composed of regulatory D-type cyclins and cyclin-dependent kinases (cdks) is rate limiting for progression through the G1 phase of the mammalian somatic cell cycle. Complexes between D-type cyclins and their major catalytic subunit, cdk4, are catalytically inactive until cyclin-bound cdk4 undergoes phosphorylation on a single threonyl residue (Thr-172). This step is catalyzed by a cdk-activating kinase (CAK) functionally analogous to the enzyme which phosphorylates cdc2 and cdk2 at Thr-161/160. Here, we demonstrate that the catalytic subunit of mouse cdc2/cdk2 CAK (a 39-kDa protein designated p39MO15) can assemble with a regulatory protein present in either insect or mammalian cells to generate a CAK activity capable of phosphorylating and enzymatically activating both cdk2 and cdk4 in complexes with their respective cyclin partners. A newly identified 37-kDa cyclin-like protein (cyclin H [R. P. Fisher and D. O. Morgan, Cell 78:713-724, 1994]) can assemble with p39MO15 to activate both cyclin A-cdk2 and cyclin D-cdk4 in vitro, implying that CAK is structurally reminiscent of cyclin-cdk complexes themselves. Antisera produced to the p39MO15 subunit can completely deplete mammalian cell lysates of CAK activity for both cyclin A-cdk2 and cyclin D-cdk4, with recovery of activity in the resulting immune complexes. By using an immune complex CAK assay, CAK activity for cyclin A-cdk2 and cyclin D-cdk4 was detected both in quiescent cells and invariantly throughout the cell cycle. Therefore, although it is essential for the enzymatic activation of cyclin-cdk complexes, CAK appears to be neither rate limiting for the emergence of cells from quiescence nor subject to upstream regulatory control by stimulatory mitogens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号