首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The BCL1 B lymphoma responds to IL-4, IL-5, and GM-CSF   总被引:5,自引:0,他引:5  
Proliferation in vitro of the in vivo passaged murine B cell tumor line BCL1 has been used as a standard assay for mouse interleukin-5 (IL-5) for a number of years. We demonstrate that this line will also respond to human IL-5. The response to murine IL-5 is abrogated by transforming growth factor-beta and to a lesser extent by interferon-gamma. This suggests a possible regulatory role for these lymphokines in the proliferation of B cells induced by IL-5. Other purified recombinant lymphokines were also tested for their ability to induce BCL1 proliferation. The lymphokines IL-1, IL-2, IL-3, and IL-6 had no effect on the growth of BCL1. In contrast, IL-4 and more surprisingly granulocyte-macrophage colony-stimulating factor (GM-CSF) also induced proliferation of this cell. These effects could be inhibited by specific antibodies directed against the respective lymphokines. These data suggest that GM-CSF, as well as IL-4 and IL-5, may be yet another regulator of neoplastic and possibly even normal B-cell growth and differentiation.  相似文献   

2.
T cell suppressor factor produced by human glioblastoma cells inhibits T cell proliferation in vitro and more specifically interferes with interleukin-2 (IL-2)-dependent T cell growth. Here we report the purification of this factor from conditioned medium of the human glioblastoma cell line 308. Amino-terminal sequence analysis of the 12.5-kd protein demonstrates that eight out of the first 20 amino acids are identical to human transforming growth factor-beta. Purified glioblastoma-derived T cell suppressor factor and transforming growth factor-beta from porcine platelets inhibit both IL-2-induced proliferation of ovalbumin-specific T helper cells and lectin-induced thymocyte proliferation with similar specific activities. If released by glioblastoma cells in vivo, the factor may contribute to impaired immunosurveillance and to the cellular immunodeficiency state detected in the patients.  相似文献   

3.
We have examined the histological and cytoskeletal changes in rat connective tissues induced by subcutaneous perfusion with cytokines. Granulocyte macrophage-colony stimulating factor (GM-CSF), tumor necrosis factor-alpha (TNF-alpha), interleukin-1-alpha (IL-1-alpha), transforming growth factor-beta (TGF-beta) and platelet-derived growth factor (PDGF) produced a significant fibroblast accumulation, neovascular development and a weak to moderate leukocyte infiltration, while interleukin-2 (IL-2) and gamma-interferon (gamma-IFN) induced intense mononucleated leukocyte infiltration. Immunofluorescence staining showed that accumulated fibroblastic cells were positive for alpha-smooth muscle (SM) actin (but negative for the desmin and muscle myosin) only in GM-CSF-treated tissues. Electron microscopic examination established that a significant proportion of fibroblastic cell in GM-CSF-, IL-1-alpha- or TGF-beta-treated animals were typical myofibroblasts. Only in GM-CSF-treated animals did microfilament bundles of myofibroblasts contain alpha-SM actin, when examined by immuno electron microscopy. Our results suggest that locally applied cytokines induce the formation of distinct granulation tissues. In particular, GM-CSF stimulates alpha-SM actin synthesis in myofibroblasts, illustrating an unexpected extra-hematopoietic in vivo effect of this factor.  相似文献   

4.
Invariant natural killer T (iNKT) cells are activated during infection, but how they limit microbial growth is unknown in most cases. We investigated how iNKT cells suppress intracellular Mycobacterium tuberculosis (Mtb) replication. When co-cultured with infected macrophages, iNKT cell activation, as measured by CD25 upregulation and IFNγ production, was primarily driven by IL-12 and IL-18. In contrast, iNKT cell control of Mtb growth was CD1d-dependent, and did not require IL-12, IL-18, or IFNγ. This demonstrated that conventional activation markers did not correlate with iNKT cell effector function during Mtb infection. iNKT cell control of Mtb replication was also independent of TNF and cell-mediated cytotoxicity. By dissociating cytokine-driven activation and CD1d-restricted effector function, we uncovered a novel mediator of iNKT cell antimicrobial activity: GM-CSF. iNKT cells produced GM-CSF in vitro and in vivo in a CD1d-dependent manner during Mtb infection, and GM-CSF was both necessary and sufficient to control Mtb growth. Here, we have identified GM-CSF production as a novel iNKT cell antimicrobial effector function and uncovered a potential role for GM-CSF in T cell immunity against Mtb.  相似文献   

5.
Inflammatory mouse peritoneal macrophages were activated by IFN-gamma in synergy with IL-2 or Lipid A to mediate TNF production for autocrine generation of cytotoxic nitric oxide (NO) to kill P815 or L1210 tumor targets. It was determined that for IL-2, but not Lipid A, to effectively trigger activation of IFN-gamma-primed macrophages, the tumor targets must be also present for interaction with effector macrophages to mediate the production of TNF and NO. IFN-gamma- and IL-2-activated macrophages from syngeneic DBA/2 and allogeneic C3H mice had identical MHC-unrestricted requirements for interaction with DBA/2 mouse-derived P815 and L1210 targets to mediate production of TNF and NO for tumor cytotoxicity. To further define the mechanistic requirements for macrophage-tumor target interaction, IFN-gamma- and IL-2-activated macrophages were separated from P815 targets in culture by a semipermeable membrane. Under these conditions, both TNF and NO were produced by the macrophage, which indicated that the requirement for tumor target-macrophage interaction may be due to a soluble factor produced by the target rather than to direct physical contact. This was confirmed by experiments in which 24-h cell-free culture fluids, derived from either P815 or L1210 tumor targets, substituted for the intact tumor cells in the stimulation of TNF mRNA synthesis and secretion with NO generation of TNF mRNA synthesis and secretion with NO generation by IFN-gamma- and IL-2-activated C3H or DBA/2 macrophages. The activity in 24-h culture fluids derived from P815 and L1210 tumor targets was tentatively designated as tumor-derived recognition factor(s) (TDRF) since it was produced constitutively by the tumor targets and synergized with IFN-gamma and IL-2 to induce macrophage production of TNF and NO for death of the same targets. A variety of nontransformed human and mouse fibroblasts, mouse spleen lymphocytes, and two adherent mouse fibrosarcomas did not produce detectable TDRF activity, whereas two mouse T lymphomas, EL4 and EL4.IL-2, produced TDRF activity similar to L1210 mouse leukemia and P815 mastocytoma. The C3H/MCA, a TDRF-nonproducing mouse fibrosarcoma, was susceptible to cytotoxicity mediated by macrophages activated by IFN-gamma and Lipid A, but not by IL-2 triggering. Exogenous TDRF derived from L1210 targets reconstituted the cytotoxic activity for C3H/MCA MCA targets mediated by IFN-gamma- and IL-2-activated macrophages accompanied by the production of TNF and cytotoxic NO.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Khameneh HJ  Isa SA  Min L  Nih FW  Ruedl C 《PloS one》2011,6(7):e23025
GM-CSF is mostly known for its capacity to promote bone marrow progenitor differentiation, to mobilize and mature myeloid cells as well as to enhance host immune responses. However the molecular actions of GM-CSF are still poorly characterized. Here we describe a new surprising facet of this "old" growth factor as a key regulator involved in IL-1β secretion. We found that IL-1β release, a pivotal component of the triggered innate system, is heavily dependent on the signaling induced by GM-CSF in such an extent that in its absence IL-1β is only weakly secreted. GM-CSF synergizes with LPS for IL-1β secretion mainly at the level of pro-IL-1β production via strengthening the NF-κB signaling. In addition, we show that expression of Rab39a, a GTPase required for caspase-1 dependent IL-1β secretion is greatly augmented by LPS and GM-CSF co-stimulation suggesting a potential GM-CSF contribution in enhancing IL-1β exocytosis. The role of GM-CSF in regulating IL-1β secretion is extended also in vivo, since GM-CSF R-/- mice are more resistant to LPS-mediated septic shock. These results identify GM-CSF as a key regulator of IL-1β production and indicate GM-CSF as a previously underestimated target for therapeutic intervention.  相似文献   

7.
Tumor cells have been reported to exert inhibitory effects on the activation of T lymphocytes in vitro. We show that the IL-2-stimulated proliferation of a Th cell line is suppressed when the T cells are cocultured with human glioblastoma and melanoma cell lines. The use of two Th cell clones that differ in their responsiveness to growth-inhibition by transforming growth factor-beta (TGF-beta) and the analysis of tumor cell-derived supernatants as well as of TGF-beta 1/TGF-beta 2 gene expression allowed to distinguish two pathways of tumor-induced immunosuppression. Glioblastoma cells exert their immunosuppressive effects by producing biologically active TGF-beta 2, whereas the immunosuppressive state induced by melanoma cells is TGF-beta-independent and requires direct contact between tumor cell and T cell. The TGF-beta-dependent immunosuppression is down-regulated by various protease inhibitors and up-regulated by estradiol via modulation of the production of biologically active TGF-beta 2 by glioblastoma cells leaving total activatable TGF-beta 2 unaffected. No such modulation is functional for the TGF-beta-independent pathway of immunosuppression. We conclude that the production of active TGF-beta by tumor cells is regulated at a posttranslational level by the coordinated action of several proteolytic enzymes.  相似文献   

8.
M Matsumura  N Banba  S Motohashi  Y Hattori 《Life sciences》1999,65(12):PL129-PL135
Monocytes and T-lymphocytes, both of which play a pivotal role in immune/inflammatory responses, can be attracted from the circulation into tissues by monocyte chemoattractant protein-1 (MCP-1), and monocytes can be further activated by colony-stimulating factors (CSFs), granulocyte/macrophage CSF (GM-CSF) or macrophage CSF (M-CSF). We examined whether either interleukin-6 (IL-6) or transforming growth factor-beta (TGF-beta), both of which are produced by thyroid follicular cells (TFC), can regulate the production of MCP-1 or CSF(s) in human TFC. IL-6, being effective only in the presence of soluble IL-6 receptor (sIL-6R), stimulated the expression of both MCP-1 and M-CSF, but was inhibitory on GM-CSF expression. On the other hand, TGF-beta stimulated the expression of both MCP-I and GM-CSF, but suppressed M-CSF expression. These results suggest a possible role of IL-6 or TGF-beta on the initiation and/or modulation of thyroid immune/inflammatory responses via MCP-1 production and differential production of GM-CSF or M-CSF by TFC.  相似文献   

9.
Monocytes are known to produce both hematopoietic growth factors and other factors, monokines, which do not directly stimulate hematopoiesis. Monokines such as interleukin-1 (IL-1) and tumor necrosis factor (TNF) may indirectly stimulate mesenchymal cells to produce hematopoietic growth factors. The identity of all the factors produced by monocytes or mesenchymal cells has not been established because of overlapping activities on biologic assay. The purpose of this study was to identify the individual growth factors produced by endothelial cells before and after stimulation with various monokines. We prepared conditioned media and extracted RNA from endothelial cells before and after stimulation with monokines. The results show that immortalized endothelial cells produce maximal detectable amounts of granulocyte-macrophage colony-stimulating factor (GM-CSF) constitutively. In contrast, GM-CSF production by primary endothelial cells requires induction with either IL-1 or TNF.  相似文献   

10.
The Moloney murine leukemia virus (MLV)-based retroviral vector has been widely used for transfer of exogenous genes to various organs and tissues. Although the long terminal repeat (LTR) of MLV allows for transgene expression in a wide range of cell type, its activity is often silenced in vivo. In reporter macrophages transduced with a MLV-based retroviral vector, activity of the LTR was transiently and reversibly suppressed following stimulation by lipopolysaccharide (LPS). When unstimulated reporter macrophages were co-cultured with LPS-stimulated, untransduced macrophages, the LTR activity was similarly depressed. Activity of the LTR in retrovirus-transduced, mesangial cells was also down-regulated when co-cultured with activated macrophages. This suppressive effect was reproduced by cross-feeding with culture media conditioned by activated macrophages. LPS-stimulated macrophages abundantly expressed cytokines including IL-1beta, tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta1 (TGF-beta1). When externally added, TNF-alpha and/or TGF-beta1, but not IL-1beta, depressed activity of the LTR in reporter macrophages and reporter mesangial cells. These results raise a possibility that expression of transgenes driven by the MLV-LTR may be silenced in vivo when the retrovirally-transduced cells are co-localized with activated macrophages.  相似文献   

11.
12.
Under hypoxia, tumor cells, and tumor-associated macrophages produce VEGF (vascular endothelial growth factor), a signaling molecule that induces angiogenesis. The same macrophages, when treated with GM-CSF (granulocyte/macrophage colony-stimulating factor), produce sVEGFR-1 (soluble VEGF receptor-1), a soluble protein that binds with VEGF and inactivates its function. The production of VEGF by macrophages is regulated by HIF-1α (hypoxia inducible factor-1α), and the production of sVEGFR-1 is mediated by HIF-2α. Recent experiments measured the effect of inhibiting tumor growth by GM-CSF treatment in mice with HIF-1α-deficient or HIF-2α-deficient macrophages. In the present paper, we represent these experiments by a mathematical model based on a system of partial differential equations. We show that the model simulations agree with the above experiments. The model can then be used to suggest strategies for inhibiting tumor growth. For example, the model qualitatively predicts the extent to which GM-CSF treatment in combination with a small molecule inhibitor that stabilizes HIF-2α will reduce tumor volume and angiogenesis.  相似文献   

13.
We investigated potential mechanisms by which lymphocytes infiltrating rheumatoid synovium become immunosuppressed. In 20 of 22 synovial fluids and 12 of 13 synovial tissue culture supernatants, no IL-1 bioactivity could be detected in the thymocyte proliferation assay. These same preparations could, however, support proliferation of fibroblast monolayers, consistent with the presence of IL-1 and/or other fibroblast growth factors. Addition of either rheumatoid synovial fluids or synovial culture supernatants to exogenous IL-1 in the IL-1 bioassay caused marked inhibition of the assay indicative of an IL-1 inhibitor. This inhibition of IL-1 could be reversed by treating the effusions or supernatants with a neutralizing antibody to transforming growth factor-beta (TGF-beta). Furthermore, monocyte-macrophages isolated from rheumatoid synovial fluid constitutively released both latent and active TGF-beta in culture at levels sufficient to completely block the biologic activity of 100 U/ml IL-1. The production of substantial levels of TGF-beta by synovial macrophages, as well as the apparent ability of these inflammatory macrophages to activate latent TGF-beta, implicates TGF-beta not only as an important inhibitor of IL-1-induced lymphocyte proliferation, but also as a key cytokine in promoting synovial fibroblast hyperplasia and pathology.  相似文献   

14.
15.
The infiltration of suppressive myeloid cells into the tumor microenvironment restrains anti-tumor immunity. However, cytokines may alter the function of myeloid lineage cells to support tumor rejection, regulating the balance between pro- and anti-tumor immunity. In this study, it is shown that effector cytokines secreted by adoptively transferred T cells expressing a chimeric Ag receptor (CAR) shape the function of myeloid cells to promote endogenous immunity and tumor destruction. Mice bearing the ovarian ID8 tumor were treated with T cells transduced with a chimeric NKG2D receptor. GM-CSF secreted by the adoptively transferred T cells recruited peripheral F4/80(lo)Ly-6C(+) myeloid cells to the tumor microenvironment in a CCR2-dependent fashion. T cell IFN-γ and GM-CSF activated local, tumor-associated macrophages, decreased expression of regulatory factors, increased IL-12p40 production, and augmented Ag processing and presentation by host macrophages to Ag-specific T cells. In addition, T cell-derived IFN-γ, but not GM-CSF, induced the production of NO by F4/80(hi) macrophages and enhanced their lysis of tumor cells. The ability of CAR T cell therapy to eliminate tumor was moderately impaired when inducible NO synthase was inhibited and greatly impaired in the absence of peritoneal macrophages after depletion with clodronate encapsulated liposomes. This study demonstrates that the activation of host macrophages by CAR T cell-derived cytokines transformed the tumor microenvironment from immunosuppressive to immunostimulatory and contributed to inhibition of ovarian tumor growth.  相似文献   

16.
The type beta transforming growth factors (TGF) are potent regulators of the growth and functions of lymphocytes and macrophages. Recently the human glioblastoma cell line 308 was shown to produce TGF-beta 2. The relevance of this finding was evaluated further by comparing human glioblastoma cells with their nontransformed animal counterpart, astrocytes, with regard to the production of the three TGF-beta isoforms observed so far in mammals. In this report astrocytes are demonstrated to secrete also TGF-beta 2 and to express TGF-beta 1, -beta 2, and -beta 3 mRNA in vitro. In contrast, cultured murine brain macrophages release TGF-beta 1 and are positive for TGF-beta 1 mRNA only. Glia cell-derived TGF-beta 1 and -beta 2 are detected in latent form whereas both latent and active TGF-beta are identified in the supernatant of three human glioblastoma cell lines tested. These cell lines, however, show heterogeneity in regard to the isoform of TGF-beta expressed but share with astrocytes the inability to release TGF-beta 3. Provided production and activation of latent TGF-beta occur in vivo, astrocytes and microglia may then be expected to exert regulatory influences on immune mediated diseases of the central nervous system.  相似文献   

17.
TNF-like weak inducer of apoptosis (TWEAK), a member of the tumor necrosis factor (TNF) family, is a multifunctional cytokine that regulates cellular proliferation, angiogenesis, inflammation, and apoptosis. In this study, we investigated the effect of TWEAK on human bronchial epithelial cells. A human bronchial epithelial cell line, BEAS2B, expressed a TWEAK receptor, fibroblast growth factor-inducible 14 (Fn14), and produced IL-8 and GM-CSF upon TWEAK stimulation in a dose-dependent manner, which was abrogated by anti-Fn14 blocking antibody. TWEAK induced phosphorylation of IkappaBalpha and BAY11-7082, a selective inhibitor of IkappaBalpha phosphorylation, inhibited the TWEAK-induced IL-8 and GM-CSF production by BEAS2B cells. Moreover, primary cultured human bronchial epithelial cells also expressed Fn14 and produced IL-8 and GM-CSF upon TWEAK stimulation. Collectively, TWEAK stimulated human bronchial epithelial cells to produce IL-8 and GM-CSF through Fn14. Because IL-8 and GM-CSF are associated with inflammatory conditions, these results suggest that TWEAK/Fn14 interaction may play some roles in airway inflammatory responses.  相似文献   

18.
Adenosine A(3) receptor agonist N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) has been tested from the point of view of potentiating the effects of hematopoietic growth factors interleukin-3 (IL-3), stem cell factor (SCF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and granulocyte colony-stimulating factor (G-CSF) on the growth of hematopoietic progenitor cells for granulocytes and macrophages (GM-CFC) in suspension of normal mouse bone marrow cells in vitro. IB-MECA alone induced no GM-CFC growth. Significant elevation of numbers of GM-CFC evoked by the combinations of IB-MECA with IL-3, SCF, or GM-CSF as compared with these growth factors alone has been noted. Combination of IB-MECA with G-CSF did not induce significantly higher numbers of GM-CFC in comparison with G-CSF alone. Joint action of three drugs, namely of IB-MECA + IL-3 + GM-CSF, produced significantly higher numbers of GM-CFC in comparison with the combinations of IB-MECA + IL-3, IB-MECA + GM-CSF, or IL-3 + GM-CSF. These results give evidence of a significant role of selective activation of adenosine A(3) receptors in stimulation of the growth of granulocyte/ macrophage hematopoietic progenitor cells.  相似文献   

19.
Cytokines and bullous pemphigoid.   总被引:2,自引:0,他引:2  
This report reviews the data presented in the literature concerning the presence and levels of different cytokines in sera, lesional tissue or blister fluids of patients with bullous pemphigoid. The list of cytokines analysed includes 21 molecules: interleukins (IL)-1 => 8, IL-10 => 13, IL-15, granulocyte-monocyte-colony stimulating factor (GM-CSF), interferon-gamma (IFN-gamma), oncostatin-M (OSM), regulated upon activation normal T cell expressed and presumably secreted (RANTES), transforming growth factor-beta 1 (TGF-beta 1), tumor necrosis factor-alpha (TNF-alpha) and vascular endothelial growth factor (VEGF). Basic information regarding the functions of these cytokines and their possible involvement in the pathogenetic steps of the disease, such as autoantigen expression, autoantibody induction, complement activation, local cell recruitment and stimulation, resident cell activation, release of various effector molecules and tissue damage are also reported. A specific function for each cytokine in bullous pemphigoid induction cannot be still defined, however, the literature attributes a major role to IL-1, IL-4, IL-5, IL-6, IL-8 and IFN-gamma. On the basis of significant (direct or inverse) correlations found between disease intensity and the blister fluid/serum levels, the following cytokines IL-7, IL-15, RANTES, VEGF and TNF-alpha, besides those previously mentioned, may also be involved in this disease.  相似文献   

20.
The aim of the studies was to ascertain if adenosine is able to co-operate with selected hematopoietic growth factors and cytokines, namely with granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), stem cell factor (SCF), interleukin-3 (IL-3), and interleukin-11 (IL-11), in inducing the growth of colonies from hematopoietic progenitor cells for granulocytes and macrophages (GM-CFC) from normal bone marrow cells in vitro. Adenosine was found not to produce any colonies when present in the cultures as the only potential stimulator. All the tested cytokines and growth factors were observed to induce the growth of distinct numbers of GM-CFC colonies, with the exception of IL-11. When suboptimal concentrations of the evaluated cytokines and growth factors were tested in the cultures in which various concentrations of adenosine were concomitantly present, mutually potentiating effects were found in the case of IL-3 and SCF. These results confirm the role of adenosine in regulation of granulopoiesis and predict IL-3 and SCF as candidates for further in vivo studies of their combined administration with adenosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号