共查询到20条相似文献,搜索用时 0 毫秒
1.
Many enzymes use metal ions within their active sites to achieve enormous rate acceleration. Understanding how metal ions mediate catalysis requires elucidation of metal ion interactions with both the enzyme and the substrate(s). The three-dimensional arrangement determined by X-ray crystallography provides a powerful starting point for identifying ground state interactions, but only functional studies can establish and interrogate transition state interactions. The Tetrahymena group I ribozyme is a paradigm for the study of RNA catalysis, and previous work using atomic mutagenesis and quantitative analysis of metal ion rescue behavior identified catalytic metal ions making five contacts with the substrate atoms. Here, we have combined atomic mutagenesis with site-specific phosphorothioate substitutions in the ribozyme backbone to establish transition state ligands on the ribozyme for one of the catalytic metal ions, referred to as M A. We identified the pro-S P oxygen atoms at nucleotides C208, A304, and A306 as ground state ligands for M A, verifying interactions suggested by the Azoarcus crystal structures. We further established that these interactions are present in the chemical transition state, a conclusion that requires functional studies, such as those carried out herein. Elucidating these active site connections is a crucial step toward an in-depth understanding of how specific structural features of the group I intron lead to catalysis. 相似文献
2.
Mutational analysis of the yeast U2 snRNA suggests a structural similarity to the catalytic core of group I introns. 总被引:6,自引:0,他引:6
We have used an in vitro reconstitution system to determine the effects of a large number of mutations in the highly conserved 5' terminal domain of the yeast U2 snRNA on pre-mRNA splicing. Whereas many mutations have little or no functional consequence, base substitutions in two regions were found to have drastic effects on pre-mRNA splicing. A previously unrecognized function for the U2 snRNA in the second step of splicing was found by alteration of the absolutely conserved sequence AGA upstream of the branch point recognition sequence. The effects of these mutations suggest the formation of a structure involving the U2 snRNA similar to the guanosine-binding site found in the catalytic core of group I introns. 相似文献
3.
The antiquity of group I introns. 总被引:2,自引:0,他引:2
D A Shub 《Current opinion in genetics & development》1991,1(4):478-484
The recent discovery of self-splicing introns in cyanobacteria has given renewed interest to the question of whether introns may have been present in the ancestor of all living things. The properties of introns in genes of bacteria and bacteriophages are discussed in the context of their possible origin and biological function. 相似文献
4.
There are four major classes of introns: self-splicing group I and group II introns, tRNA and/or archaeal introns and spliceosomal introns in nuclear pre-mRNA. Group I introns are widely distributed in protists, bacteria and bacteriophages. Group II introns are found in fungal and land plant mitochondria, algal plastids, bacteria and Archaea. Group II and spliceosomal introns share a common splicing pathway and might be related to each other. The tRNA and/or archaeal introns are found in the nuclear tRNA of eukaryotes and in archaeal tRNA, rRNA and mRNA. The mechanisms underlying the self-splicing and mobility of a few model group I introns are well understood. By contrast, the role of these highly distinct processes in the evolution of the 1500 group I introns found thus far in nature (e.g. in algae and fungi) has only recently been clarified. The explosion of new sequence data has facilitated the use of comparative methods to understand group I intron evolution in a broader context and to generate hypotheses about intron insertion, splicing and spread that can be tested experimentally. 相似文献
5.
A group I intron of 418 base pairs in the Monilinia fructicola ribosomal small-subunit sequence was characterized. The absence of such an intron in M. laxa and M. fructigena led to a PCR test for M. fructicola identification based on the presence of this intron. The failure to amplify a PCR fragment for some isolates of M. fructicola recently lead to speculation that the intron might not be present always in M. fructicola. In this study, we analyzed 13 isolates of M. fructicola and found that the intron was absent in four isolates and we determined from sequence analysis that there are several nucleotide variations that allow the M. fructicola ribosomal SSU intron to be grouped into 6 polymorphic types. 相似文献
6.
Identification of a family of group II introns encoding LAGLIDADG ORFs typical of group I introns
下载免费PDF全文

Group I and group II introns are unrelated classes of introns that each encode proteins that facilitate intron splicing and intron mobility. Here we describe a new subfamily of nine introns in fungi that are group II introns but encode LAGLIDADG ORFs typical of group I introns. The introns have fairly standard group IIB1 RNA structures and are inserted into three different sites in SSU and LSU rRNA genes. Therefore, introns should not be assumed to be group I introns based solely on the presence of a LAGLIDADG ORF. 相似文献
7.
Mears JA Cannone JJ Stagg SM Gutell RR Agrawal RK Harvey SC 《Journal of molecular biology》2002,321(2):215-234
We have determined the three-dimensional organization of ribosomal RNAs and proteins essential for minimal ribosome function. Comparative sequence analysis identifies regions of the ribosome that have been evolutionarily conserved, and the spatial organization of conserved domains is determined by mapping these onto structures of the 30S and 50S subunits determined by X-ray crystallography. Several functional domains of the ribosome are conserved in their three-dimensional organization in the Archaea, Bacteria, Eucaryotic nuclear, mitochondria and chloroplast ribosomes. In contrast, other regions from both subunits have shifted their position in three-dimensional space during evolution, including the L11 binding domain and the alpha-sarcin-ricin loop (SRL). We examined conserved bridge interactions between the two ribosomal subunits, giving an indication of which contacts are more significant. The tRNA contacts that are conserved were also determined, highlighting functional interactions as the tRNA moves through the ribosome during protein synthesis. To augment these studies of a large collection of comparative structural models sampled from all major branches on the phylogenetic tree, Caenorhabditis elegans mitochondrial rRNA is considered individually because it is among the smallest rRNA sequences known. The C.elegans model supports the large collection of comparative structure models while providing insight into the evolution of mitochondrial ribosomes. 相似文献
8.
Self-splicing group I introns are being found in an increasing number of bacteriophages. Most introns contain an open reading frame coding for a homing endo-nuclease that confers mobility to both the intron and the homing endonuclease gene (HEG). The frequent occurrence of intron/HEG has raised questions whether group I introns are spread via horizontal transfer between phage populations. We have determined complete sequences for the known group I introns among T-even-like bacteriophages together with sequences of the intron-containing genes td, nrdB, and nrdD from phages with and without introns. A previously uncharacterized phage isolate, U5, is shown to contain all three introns, the only phage besides T4 found with a "full set" of these introns. Sequence analysis of td and nrdB genes from intron-containing and intronless phages provides evidence that recent horizontal transmission of introns has occurred among the phages. The fact that several of the HEGs have suffered deletions rendering them non-functional implies that the homing endonucleases are of no selective advantage to the phage and are rapidly degenerating and probably dependent upon frequent horizontal transmissions for maintenance within the phage populations. Several of the introns can home to closely related intronless phages during mixed infections. However, the efficiency of homing varies and is dependent on homology in regions flanking the intron insertion site. The occurrence of optional genes flanking the respective intron-containing gene can strongly affect the efficiency of homing. These findings give further insight into the mechanisms of propagation and evolution of group I introns among the T-even-like bacteriophages. 相似文献
9.
Mutagenesis and comparative sequence analysis of a base triple joining the two domains of group I ribozymes.
下载免费PDF全文

Tertiary interactions are important in the higher-order folding of catalytic RNAs. Recently, a base triple, joining the two major domains of the catalytic core, was determined in group I introns from the cyanobacterium Anabaena PCC7120 and the eukaryote Tetrahymena thermophila. This base triple involves the fifth base pair of P4 and the fifth base of the single-stranded region J8/7. We made base pair and single-nucleotide substitutions in the fifth base pair of P4, a G-C in the wild-type Anabaena intron, and tested them for self-splicing activity. The results suggest a hydrogen bonding model in which only the C of the base pair interacts directly with the fifth base of J8/7. Comparative sequence analysis was used to determine the different combinations of base triples that occur in approximately 450 natural group I introns identified to date. About 94% of the base triples analyzed are compatible with the proposed hydrogen bonding model. Disrupting this base triple in the Tetrahymena intron resulted in the disappearance of splicing intermediates (intron 3' exon and 5' exon), even though the first step of splicing was not affected. Restoration of the base triple by a compensatory mutation reverted the intermediates to wild-type levels. These results suggest that disruption of the base triple increases the rate of the second step of splicing or of a conformational change preceding the second step. Repositioning of the base triple to form a new set of interactions may be required for the second step of splicing. 相似文献
10.
Despite its small size, the 205 nt group I intron from Azoarcus tRNA(Ile) is an exceptionally stable self-splicing RNA. This IC3 class intron retains the conserved secondary structural elements common to group I ribozymes, but lacks several peripheral helices. These features make it an ideal system to establish the conserved chemical basis of group I intron activity. We collected nucleotide analog interference mapping (NAIM) data of the Azoarcus intron using 14 analogs that modified the phosphate backbone, the ribose sugar, or the purine base functional groups. In conjunction with a complete interference set collected on the Tetrahymena group I intron (IC1 class), these data define a "chemical phylogeny" of functional groups that are important for the activity of both introns and that may be common chemical features of group I intron catalysts. The data identify the functional moieties most likely to play a conserved role as ligands for catalytic metal ions, the substrate helix, and the guanosine cofactor. These include backbone functional groups whose nucleotide identity is not conserved, and hence are difficult to identify by standard phylogenetic sequence comparisons. The data suggest that both introns utilize an equivalent set of long range tertiary interactions for 5'-splice site selection between the P1 substrate helix and its receptor in the J4/5 asymmetric bulge, as well as an equivalent set of 2'-OH groups for P1 helix docking into most of the single stranded segment J8/7. However, the Azoarcus intron appears to make an alternative set of interactions at the base of the P1 helix and at the 5'-end of the J8/7. Extensive differences were observed within the intron peripheral domains, particularly in P2 and P8 where the Azoarcus data strongly support the proposed formation of a tetraloop-tetraloop receptor interaction. This chemical phylogeny for group I intron catalysis helps to refine structural models of the RNA active site and identifies functional groups that should be carefully investigated for their role in transition state stabilization. 相似文献
11.
The class I ligase ribozyme catalyzes a Mg(++)-dependent RNA-ligation reaction that is chemically analogous to a single step of RNA polymerization. Indeed, this ribozyme constitutes the catalytic domain of an accurate and general RNA polymerase ribozyme. The ligation reaction is also very rapid in both single- and multiple-turnover contexts and thus is informative for the study of RNA catalysis as well as RNA self-replication. Here we report the initial characterization of the three-dimensional architecture of the ligase. When the ligase folds, several segments become protected from hydroxyl-radical cleavage, indicating that the RNA adopts a compact tertiary structure. Ribozyme folding was largely, though not completely, Mg(++) dependent, with a K(1/2[Mg]) < 1 mM, and was observed over a broad temperature range (20 degrees C -50 degrees C). The hydroxyl-radical mapping, together with comparative sequence analyses and analogy to a region within 23S ribosomal RNA, were used to generate a three-dimensional model of the ribozyme. The predictive value of the model was tested and supported by a photo-cross-linking experiment. 相似文献
12.
Strain-dependent sequence heterogeneity in the nuclear group I introns and large subunit ribosomal RNA in Physarum polycephalum. 总被引:1,自引:0,他引:1
S Johansen 《DNA sequence》1991,2(3):193-196
The DNA sequence of an internal EcoRI fragment in the large subunit ribosomal RNA gene from the myxomycete Physarum polycephalum, strain M3C, has been determined. This ribosomal DNA fragment contain two group I introns. Sequence heterogeneity in the two introns and in the coding region of the ribosomal RNA were identified upon comparison to the strain PPO-1 sequence. The nature of the sequence variations is discussed. 相似文献
13.
One family within the Euascomycetes (Ascomycota), the lichen-forming Physciaceae, is particularly rich in nuclear ribosomal [r]DNA group I introns. We used phylogenetic analyses of group I introns and lichen-fungal host cells to address four questions about group I intron evolution in lichens, and generally in all eukaryotes: 1) Is intron spread in the lichens associated with the intimate association of the fungal and photosynthetic cells that make up the lichen thallus? 2) Are the multiple group I introns in the lichen-fungi of independent origins, or have existing introns spread into novel sites in the rDNA? 3) If introns have moved to novel sites, then does the exon context of these sites provide insights into the mechanism of intron spread? and 4) What is the pattern of intron loss in the small subunit rDNA gene of lichen-fungi? Our analyses show that group I introns in the lichen-fungi and in the lichen-algae (and lichenized cyanobacteria) do not share a close evolutionary relationship, suggesting that these introns do not move between the symbionts. Many group I introns appear to have originated in the common ancestor of the Lecanorales, whereas others have spread within this lineage (particularly in the Physciaceae) putatively through reverse-splicing into novel rRNA sites. We suggest that the evolutionary history of most lichen-fungal group I introns is characterized by rare gains followed by extensive losses in descendants, resulting in a sporadic intron distribution. Detailed phylogenetic analyses of the introns and host cells are required, therefore, to distinguish this scenario from the alternative hypothesis of widespread and independent intron gains in the different lichen-fungal lineages. 相似文献
14.
In the current era of massive discoveries of noncoding RNAs within genomes, being able to infer a function from a nucleotide sequence is of paramount interest. Although studies of individual group I introns have identified self-splicing and nonself-splicing examples, there is no overall understanding of the prevalence of self-splicing or the factors that determine it among the >2300 group I introns sequenced to date. Here, the self-splicing activities of 12 group I introns from various organisms were assayed under six reaction conditions that had been shown previously to promote RNA catalysis for different RNAs. Besides revealing that assessing self-splicing under only one condition can be misleading, this survey emphasizes that in vitro self-splicing efficiency is correlated with the GC content of the intron (>35% GC was generally conductive to self-splicing), and with the ability of the introns to form particular tertiary interactions. Addition of the Neurospora crassa CYT-18 protein activated splicing of two nonself-splicing introns, but inhibited the second step of self-splicing for two others. Together, correlations between sequence, predicted structure and splicing begin to establish rules that should facilitate our ability to predict the self-splicing activity of any group I intron from its sequence. 相似文献
15.
16.
A previous report described the presence of a self-splicing group I intron in a flagellin gene from a thermophilic Bacillus species. Here, we present evidence that the splicing reaction of the flagellin introns is dependent on temperature. Furthermore, a complementation analysis using a Bacillus subtilis flagellin-deficient mutant indicated that the intron-containing flagellin gene significantly restored the motility of the mutant at higher temperatures. 相似文献
17.
Many tRNA(Leu)UAA genes from plastids contain a group I intron. An intron is also inserted in the same gene at the same position in cyanobacteria, the bacterial progenitors of plastids, suggesting an ancient bacterial origin for this intron. A group I intron has also been found in the tRNA(fMet) gene of some cyanobacteria but not in plastids, suggesting a more recent origin for this intron. In this study, we investigate the phylogenetic distributions of the two introns among cyanobacteria, from the earliest branching to the more derived species. The phylogenetic distribution of the tRNA(Leu)UAA intron follows the clustering of rRNA sequences, being either absent or present in clades of closely related species, with only one exception in the Pseudanabaena group. Our data support the notion that the tRNA(Leu)UAA intron was inherited by cyanobacteria and plastids through a common ancestor. Conversely, the tRNA(fMet) intron has a sporadic distribution, implying that many gains and losses occurred during cyanobacterial evolution. Interestingly, a phylogenetic tree inferred from intronic sequences clearly separates the different tRNA introns, suggesting that each family has its own evolutionary history. 相似文献
18.
Metal ion interaction with cosubstrate in self-splicing of group I introns. 总被引:1,自引:3,他引:1
下载免费PDF全文

The catalytic mechanism for self-splicing of the group I intron in the pre-mRNA from the nrdB gene in bacteriophage T4 has been investigated using 2'-amino- 2'-deoxyguanosine or guanosine as cosubstrates in the presence of Mg2+, Mn2+and Zn2+. The results show that a divalent metal ion interacts with the cosubstrate and thereby influences the efficiency of catalysis in the first step of splicing. This suggests the existence of a metal ion that catalyses the nucleophilic attack of the cosubstrate. Of particular significance is that the transesterification reactions of the first step of splicing with 2'-amino-2'-deoxyguanosine as cosubstrate are more efficient in mixtures containing either Mn2+or Zn2+together with Mg2+than with only magnesium ions present. The experiments in metal ion mixtures show that two (or more) metal ions are crucial for the self-splicing of group I introns and suggest the possibility that more than one of these have a direct catalytic role. A working model for a two-metal-ion mechanism in the transesterification steps is suggested. 相似文献
19.
The spread of group I introns depends on their association with intron-encoded homing endonucleases. Introns that encode functional homing endonuclease genes (HEGs) are highly invasive, whereas introns that only encode the group I ribozyme responsible for self-splicing are generally stably inherited (i.e., vertical inheritance). A number of recent case studies have provided new knowledge on the evolution of group I introns, however, there are still large gaps in understanding of their distribution on the tree of life, and how they have spread into new hosts and genic sites. During a larger phylogenetic survey of chlorophyceaen green algae, we found that 23 isolates contain at least one group I intron in the rbcL chloroplast gene. Structural analyses show that the introns belong to one of two intron lineages, group IA2 intron-HEG (GIY-YIG family) elements inserted after position 462 in the rbcL gene, and group IA1 introns inserted after position 699. The latter intron type sometimes encodes HNH homing endonucleases. The distribution of introns was analyzed on an exon phylogeny and patterns were recovered that are consistent with vertical inheritance and possible horizontal transfer. The rbcL 462 introns are thus far reported only within the Volvocales, Hydrodictyaceae and Bracteacoccus, and closely related isolates of algae differ in the presence of rbcL introns. Phylogenetic analysis of the intron conserved regions indicates that the rbcL699 and rbcL462 introns have distinct evolutionary origins. The rbcL699 introns were likely derived from ribosomal RNA L2449 introns, whereas the rbcL462 introns form a close relationship with psbA introns. 相似文献
20.
More than 1000 group I introns have been identified in fungal rDNA. Little is known, however, of the splicing and secondary structure evolution of these ribozymes. Here, we use a combination of comparative and biochemical methods to address the evolution and splicing of a vertically inherited group I intron found at position 788 in the fungal small subunit (S) rRNA. The ancestral state of the S788 intron contains a highly conserved core and an extended P5 domain typical of IC1 introns. In contrast, the more derived introns have lost most of P5, and have an accelerated divergence rate within the core region with three functionally important substitutions that unambiguously separate them from the ancestral pool. Of 14 S788 group I introns that were tested for splicing, five, all of the ancestral type, were able to self-splice and produced intron RNA circles in vitro. The more derived S788 introns did not self-splice, and potentially rely on fungal-specific factors to facilitate splicing. In summary, we demonstrate one possible fate of vertically inherited group I introns, the loss of secondary structure elements, lessened selective constraints in the intron core, and ultimately, dependence on host-mediated splicing. 相似文献