首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The control of alternative pre-mRNA splicing often requires the participation of factors displaying synergistic or antagonistic activities. In the hnRNP A1 pre-mRNA, three elements promote the exclusion of alternative exon 7B, while a fourth intron element (CE9) represses splicing of exon 7B to the downstream exon. We have shown previously that the 5' portion of the 38-nucleotide-long CE9 element is bound by SRp30c, and that this interaction is important for repression in vitro. To determine whether SRp30c alone can impose repression, we tested a high-affinity SRp30c binding site that we identified using the SELEX protocol. We find that multiple high-affinity SRp30c sites are required to replicate the level of repression obtained with CE9, and that both the 5' and the 3' portions of CE9 contribute to SRp30c binding. Performing RNA affinity chromatography with the complete CE9 element recovered hnRNP I/PTB. Surprisingly however, His-tagged PTB reduced the binding of SRp30c to CE9 in a nuclear extract, stimulated splicing to a downstream 3' splice site, and relieved the CE9-mediated splicing repression in vitro. Our in vivo results are consistent with the notion that increasing PTB levels alleviates the repression imposed by CE9 to a downstream 3' splice site. Thus, PTB can function as an anti-repressor molecule to counteract the splicing inhibitory activity of SRp30c.  相似文献   

2.
The splicing of the c-src exon N1 is controlled by an intricate combination of positive and negative RNA elements. Most previous work on these sequences focused on intronic elements found upstream and downstream of exon N1. However, it was demonstrated that the 5' half of the N1 exon itself acts as a splicing enhancer in vivo. Here we examine the function of this regulatory element in vitro. We show that a mutation in this sequence decreases splicing of the N1 exon in vitro. Proteins binding to this element were identified as hnRNP A1, hnRNP H, hnRNP F, and SF2/ASF by site-specific cross-linking and immunoprecipitation. The binding of these proteins to the RNA was eliminated by a mutation in the exonic element. The activities of hnRNP A1 and SF2/ASF on N1 splicing were examined by adding purified protein to in vitro splicing reactions. SF2/ASF and another SR protein, SC35, are both able to stimulate splicing of c-src pre-mRNA. However, splicing activation by SF2/ASF is dependent on the N1 exon enhancer element whereas activation by SC35 is not. In contrast to SF2/ASF and in agreement with other systems, hnRNP A1 repressed c-src splicing in vitro. The negative activity of hnRNP A1 on splicing was compared with that of PTB, a protein previously demonstrated to repress splicing in this system. Both proteins repress exon N1 splicing, and both counteract the enhancing activity of the SR proteins. Removal of the PTB binding sites upstream of N1 prevents PTB-mediated repression but does not affect A1-mediated repression. Thus, hnRNP A1 and PTB use different mechanisms to repress c-src splicing. Our results link the activity of these well-known exonic splicing regulators, SF2/ASF and hnRNP A1, to the splicing of an exon primarily controlled by intronic factors.  相似文献   

3.
SR proteins are essential splicing factors involved in the use of both constitutive and alternative exons. We previously showed that the SR proteins SRp20 and ASF/SF2 have antagonistic activities on SRp20 pre-mRNA splicing. SRp20 activates exon 4 recognition in its pre-mRNA, whereas ASF/SF2 inhibits this recognition. In experiments aimed at testing the specificity of SRp20 and ASF/SF2 for exon 4 splicing regulation, we show here that this specificity lies in the RNA binding domains of SRp20 and ASF/SF2 and not in the RS domains. Surprisingly, a deletion of 14 amino acids at the end of ASF/SF2-RBD2 converts ASF/SF2 from an inhibitor to an activator of exon 4 splicing. We found that ASF3 also inhibits exon 4 recognition, thus acting similarly to ASF/SF2, while SC35 activates a cryptic 5' splice site downstream of exon 3 and, in doing so, represses exon 4 use. In contrast, Tra2 and the SR proteins 9G8 and SRp40 do not appear to affect exon 4 splicing.  相似文献   

4.
The essential splicing factor SF2/ASF and the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) modulate alternative splicing in vitro of pre-mRNAs that contain 5' splice sites of comparable strengths competing for a common 3' splice site. Using natural and model pre-mRNAs, we have examined whether the ratio of SF2/ASF to hnRNP A1 also regulates other modes of alternative splicing in vitro. We found that an excess of SF2/ASF effectively prevents inappropriate exon skipping and also influences the selection of mutually exclusive tissue-specific exons in natural beta-tropomyosin pre-mRNA. In contrast, an excess of hnRNP A1 does not cause inappropriate exon skipping in natural constitutively or alternatively spliced pre-mRNAs. Although hnRNP A1 can promote alternative exon skipping, this effect is not universal and is dependent, e.g., on the size of the internal alternative exon and on the strength of the polypyrimidine tract in the preceding intron. With appropriate alternative exons, an excess of SF2/ASF promotes exon inclusion, whereas an excess of hnRNP A1 causes exon skipping. We propose that in some cases the ratio of SF2/ASF to hnRNP A1 may play a role in regulating alternative splicing by exon inclusion or skipping through the antagonistic effects of these proteins on alternative splice site selection.  相似文献   

5.
Alternative splicing of exon 7B in the hnRNP A1 pre-mRNA produces mRNAs encoding two proteins: hnRNP A1 and the less abundant A1B. We have reported the identification of several intron elements that contribute to exon 7B skipping. In this study, we report the activity of a novel element, conserved element 9 (CE9), located in the intron downstream of exon 7B. We show that multiple copies of CE9 inhibit exon 7B-exon 8 splicing in vitro. When CE9 is inserted between two competing 3' splice sites, a single copy of CE9 decreases splicing to the distal 3' splice site. Our in vivo results also support the conclusion that CE9 is a splicing modulator. First, inserting multiple copies of CE9 into an A1 minigene compromises the production of fully spliced products. Second, one copy of CE9 stimulates the inclusion of a short internal exon in a derivative of the human beta-globin gene. In this case, in vitro splicing assays suggest that CE9 decreases splicing of intron 1, an event that improves splicing of intron 2 and decreases skipping of the short internal exon. The ability of CE9 to act on heterologous substrates, combined with the results of a competition assay, suggest that the activity of CE9 is mediated by a trans-acting factor. Our results indicate that CE9 represses the use of the common 3' splice site in the hnRNP A1 alternative splicing unit.  相似文献   

6.
7.
8.
Exon 7B in the hnRNP A1 pre-mRNA is alternatively spliced to yield A1 and A1(B), two proteins that differ in their ability to modulate 5' splice site selection. Sequencing the murine intron downstream of exon 7B revealed the existence of several regions of similarity to the corresponding human intron. In vitro splicing assays indicate that an 84-nt region (CE6IO) decreases splicing to the proximal 5' splice site in a pre-mRNA carrying the 5' splice sites of exon 7 and 7B. In vivo, the CE6IO element promotes exon 7B skipping in pre-mRNAs expressed from a mini-gene containing the hnRNP A1 alternative splicing unit. Using oligonucleotide-targeted RNase H cleavage assays, we provide support for the existence of highly stable base pairing interactions between CE6IO and the 5' splice site region of exon 7B. Duplex formation occurs in naked pre-mRNA, resists incubation in splicing extracts, and is associated with a reduction in the assembly of U1 snRNP-dependent complexes to the 5' splice site of exon 7B. Our results demonstrate that pre-mRNA secondary structure plays an important role in promoting exon 7B skipping in the A1 pre-mRNA.  相似文献   

9.
The hnRNP A1 pre-mRNA is alternatively spliced to yield the A1 and A1b mRNAs, which encode proteins differing in their ability to modulate 5' splice site selection. Sequencing a genomic portion of the murine A1 gene revealed that the intron separating exon 7 and the alternative exon 7B is highly conserved between mouse and human. In vitro splicing assays indicate that a conserved element (CE1) from the central portion of the intron shifts selection toward the distal donor site when positioned in between the 5' splice sites of exon 7 and 7B. In vivo, the CE1 element promotes exon 7B skipping. A 17-nucleotide sequence within CE1 (CE1a) is sufficient to activate the distal 5' splice site. RNase T1 protection/immunoprecipitation assays indicate that hnRNP A1 binds to CE1a, which contains the sequence UAGAGU, a close match to the reported optimal A1 binding site, UAGGGU. Replacing CE1a by different oligonucleotides carrying the sequence UAGAGU or UAGGGU maintains the preference for the distal 5' splice site. In contrast, mutations in the AUGAGU sequence activate the proximal 5' splice site. In support of a direct role of the A1-CE1 interaction in 5'-splice-site selection, we observed that the amplitude of the shift correlates with the efficiency of A1 binding. Whereas addition of SR proteins abrogates the effect of CE1, the presence of CE1 does not modify U1 snRNP binding to competing 5' splice sites, as judged by oligonucleotide-targeted RNase H protection assays. Our results suggest that hnRNP A1 modulates splice site selection on its own pre-mRNA without changing the binding of U1 snRNP to competing 5' splice sites.  相似文献   

10.
Liu X  Mayeda A  Tao M  Zheng ZM 《Journal of virology》2003,77(3):2105-2115
Bovine papillomavirus type 1 (BPV-1) late pre-mRNAs are spliced in keratinocytes in a differentiation-specific manner: the late leader 5' splice site alternatively splices to a proximal 3' splice site (at nucleotide 3225) to express L2 or to a distal 3' splice site (at nucleotide 3605) to express L1. Two exonic splicing enhancers, each containing two ASF/SF2 (alternative splicing factor/splicing factor 2) binding sites, are located between the two 3' splice sites and have been identified as regulating alternative 3' splice site usage. The present report demonstrates for the first time that ASF/SF2 is required under physiological conditions for the expression of BPV-1 late RNAs and for selection of the proximal 3' splice site for BPV-1 RNA splicing in DT40-ASF cells, a genetically engineered chicken B-cell line that expresses only human ASF/SF2 controlled by a tetracycline-repressible promoter. Depletion of ASF/SF2 from the cells by tetracycline greatly decreased viral RNA expression and RNA splicing at the proximal 3' splice site while increasing use of the distal 3' splice site in the remaining viral RNAs. Activation of cells lacking ASF/SF2 through anti-immunoglobulin M-B-cell receptor cross-linking rescued viral RNA expression and splicing at the proximal 3' splice site and enhanced Akt phosphorylation and expression of the phosphorylated serine/arginine-rich (SR) proteins SRp30s (especially SC35) and SRp40. Treatment with wortmannin, a specific phosphatidylinositol 3-kinase/Akt kinase inhibitor, completely blocked the activation-induced activities. ASF/SF2 thus plays an important role in viral RNA expression and splicing at the proximal 3' splice site, but activation-rescued viral RNA expression and splicing in ASF/SF2-depleted cells is mediated through the phosphatidylinositol 3-kinase/Akt pathway and is associated with the enhanced expression of other SR proteins.  相似文献   

11.
Exon 11 of the insulin receptor gene (INSR) is alternatively spliced in a developmentally and tissue-specific manner. Linker scanning mutations in a 5' GA-rich enhancer in intron 10 identified AGGGA sequences that are important for enhancer function. Using RNA-affinity purification and mass spectrometry, we identified hnRNP F and hnRNP A1 binding to these AGGGA sites and also to similar motifs at the 3' end of the intron. The hnRNPs have opposite functional effects with hnRNP F promoting and hnRNP A1 inhibiting exon 11 inclusion, and deletion of the GA-rich elements eliminates both effects. We also observed specific binding of hnRNP A1 to the 5' splice site of intron 11. The SR protein SRSF1 (SF2/ASF) co-purified on the GA-rich enhancer and, interestingly, also competes with hnRNP A1 for binding to the splice site. A point mutation -3U→C decreases hnRNP A1 binding, increases SRSF1 binding and renders the exon constitutive. Lastly, our data point to a functional interaction between hnRNP F and SRSF1 as a mutant that eliminates SRSF1 binding to exon 11, or a SRSF1 knockdown, which prevents the stimulatory effect of hnRNP F over expression.  相似文献   

12.
Alternative 5' splice site selection allows Bcl-x to produce two isoforms with opposite effects on apoptosis. The pro-apoptotic Bcl-x(S) variant is up-regulated by ceramide and down-regulated by protein kinase C through specific cis-acting exonic elements, one of which is bound by SAP155. Splicing to the Bcl-x(S) 5' splice site is also enforced by heterogeneous nuclear ribonucleoprotein (hnRNP) F/H proteins and by Sam68 in cooperation with hnRNP A1. Here, we have characterized exon elements that influence splicing to the 5' splice site of the anti-apoptotic Bcl-x(L) isoform. Within a 86-nucleotide region (B3) located immediately upstream of the Bcl-x(L) donor site we have identified two elements (ML2 and AM2) that stimulate splicing to the Bcl-x(L) 5' splice site. SRp30c binds to these elements and can shift splicing to the 5' splice site of Bcl-x(L) in an ML2/AM2-dependent manner in vitro and in vivo. The B3 region also contains an element that represses the use of Bcl-x(L). This element is bound by U1 small nuclear ribonucleoprotein and contains two 5' splice sites that can be used when the Bcl-x(L) 5' splice site is mutated or the ML2/AM2 elements are deleted. Conversely, mutating the cryptic 5' splice sites stimulates splicing to the Bcl-x(L) site. Thus, SRp30c stimulates splicing to the downstream 5' splice site of Bcl-x(L), thereby attenuating the repressive effect of upstream U1 snRNP binding sites.  相似文献   

13.
Tau exon 10 splicing is altered by autosomal dominant mutations that cause frontotemporal dementia with parkinsonism chromosome 17-type and by unknown mechanisms in other related neurodegenerative disorders. Identifying cis- and trans-regulators of tau exon 10 splicing is therefore crucial for understanding disease mechanisms. We previously identified several splicing enhancers and silencers within exon 10 and intron 10. Here, we show that splicing factors SF2/ASF, Tra2beta, and a 50-kDa nuclear protein bind in vitro to the polypurine enhancer at the 5' end of exon 10. Disease splicing mutations N279K and Delta280K disrupt the enhancer and alter associations with these factors. N279K targets robustly bind Tra2beta compared with the normal enhancer, which may explain why N279K enhances exon 10 splicing in vivo. In contrast, factor associations with Delta280K targets are nearly undetectable, explaining why Delta280K almost abolishes exon 10 splicing in vivo. Small interfering RNA-mediated suppression of endogenous SF2/ASF and Tra2beta significantly reduces exon 10 splicing. Exogenous SF2/ASF dramatically enhances normal exon 10 splicing and efficiently rescues the Delta280K splicing defect. Domain deletion analyses show that the C-terminal RS domains of SF2/ASF and Tra2beta are required for normal exon 10 splicing in vivo. In contrast to Tra2beta, the SF2/ASF RS domain remains essential in the presence of a strengthened enhancer or when either weak splice site is strengthened. The data suggest that SF2/ASF has both essential and regulatory roles, whereas Tra2beta has a supporting role in exon 10 splicing.  相似文献   

14.
The mammalian thyroid hormone receptor gene c-erbAalpha gives rise to two mRNAs that code for distinct isoforms, TRalpha1 and TRalpha2, with antagonistic functions. Alternative processing of these mRNAs involves the mutually exclusive use of a TRalpha1-specific polyadenylation site or TRalpha2-specific 5' splice site. A previous investigation of TRalpha minigene expression defined a critical role for the TRalpha2 5' splice site in directing alternative processing. Mutational analysis reported here shows that purine residues within a highly conserved intronic element, SEa2, enhance splicing of TRalpha2 in vitro as well as in vivo. Although SEalpha2 is located within the intron of TRalpha2 mRNA, it activates splicing of a heterologous dsx pre-mRNA when located in the downstream exon. Competition with wild-type and mutant RNAs indicates that SEalpha2 functions by binding trans-acting factors in HeLa nuclear extract. Protein-RNA crosslinking identifies several proteins, including SF2/ASF and hnRNP H, that bind specifically to SEalpha2. SEalpha2 also includes an element resembling a 5' splice site consensus sequence that is critical for splicing enhancer activity. Mutations within this pseudo-5' splice site sequence have a dramatic effect on splicing and protein binding. Thus SEa2 and its associated factors are required for splicing of TRalpha2 pre-mRNA.  相似文献   

15.
The cellular protein p32 was isolated originally as a protein tightly associated with the essential splicing factor ASF/SF2 during its purification from HeLa cells. ASF/SF2 is a member of the SR family of splicing factors, which stimulate constitutive splicing and regulate alternative RNA splicing in a positive or negative fashion, depending on where on the pre-mRNA they bind. Here we present evidence that p32 interacts with ASF/SF2 and SRp30c, another member of the SR protein family. We further show that p32 inhibits ASF/SF2 function as both a splicing enhancer and splicing repressor protein by preventing stable ASF/SF2 interaction with RNA, but p32 does not block SRp30c function. ASF/SF2 is highly phosphorylated in vivo, a modification required for stable RNA binding and protein-protein interaction during spliceosome formation, and this phosphorylation, either through HeLa nuclear extracts or through specific SR protein kinases, is inhibited by p32. Our results suggest that p32 functions as an ASF/SF2 inhibitory factor, regulating ASF/SF2 RNA binding and phosphorylation. These findings place p32 into a new group of proteins that control RNA splicing by sequestering an essential RNA splicing factor into an inhibitory complex.  相似文献   

16.
17.
18.
J Zhu  A Mayeda  A R Krainer 《Molecular cell》2001,8(6):1351-1361
SR proteins recognize exonic splicing enhancer (ESE) elements and promote exon use, whereas certain hnRNP proteins bind to exonic splicing silencer (ESS) elements and block exon recognition. We investigated how ESS3 in HIV-1 tat exon 3 blocks splicing promoted by one SR protein (SC35) but not another (SF2/ASF). hnRNP A1 mediates silencing by binding initially to a required high-affinity site in ESS3, which then promotes further hnRNP A1 association with the upstream region of the exon. Both SC35 and SF2/ASF recognize upstream ESE motifs, but only SF2/ASF prevents secondary hnRNP A1 binding, presumably by blocking its cooperative propagation along the exon. The differential antagonism between a negative and two positive regulators exemplifies how inclusion of an alternative exon can be modulated.  相似文献   

19.
S R Shih  R M Krug 《The EMBO journal》1996,15(19):5415-5427
We show that a cellular nuclear protein, the SR splicing factor SF2/ASF, controls the level of production of an essential influenza virus protein, the M2 ion channel protein. The M2 mRNA that encodes the ion channel protein is produced by alternative splicing of another viral mRNA, M1 mRNA. The production of M2 mRNA is controlled in two ways. First, a distal (stronger) 5' splice site in M1 mRNA is blocked by the complex of viral polymerase proteins synthesized during infection, allowing the cellular splicing machinery to switch to the proximal (weaker) M2 5' splice site. Second, utilization of the weak M2 5' splice site requires its activation by the cellular SF2/ASF protein. This activation is mediated by the binding of the SF2/ASF protein to a purine-rich splicing enhancer sequence that is located in the 3' exon of M1 mRNA. We demonstrate that activation of the M2 5' splice site is controlled by the SF2/ASF protein in vivo during influenza virus infection. Utilizing four cell lines that differ in their levels of production of the SF2/ASF protein, we show that during virus infection of these cell lines both M2 mRNA and the M2 ion channel protein are produced in amounts that are proportional to the different expression levels of the SF2/ASF protein.  相似文献   

20.
The essential splicing factor ASF/SF2 activates or represses splicing depending on where on the pre-mRNA it binds. We have shown previously that ASF/SF2 inhibits adenovirus IIIa pre-mRNA splicing by binding to an intronic repressor element. Here we used MS2-ASF/SF2 fusion proteins to show that the second RNA binding domain (RBD2) is both necessary and sufficient for the splicing repressor function of ASF/SF2. Furthermore, we show that the completely conserved SWQDLKD motif in ASF/SF2-RBD2 is essential for splicing repression. Importantly, this heptapeptide motif is unlikely to be directly involved in RNA binding given its position within the predicted structure of RBD2. The activity of the ASF/SF2-RBD2 domain in splicing was position-dependent. Thus, tethering RBD2 to the IIIa intron resulted in splicing repression, whereas RBD2 binding at the second exon had no effect on IIIa splicing. The splicing repressor activity of RBD2 was not unique to the IIIa pre-mRNA, as binding of RBD2 at an intronic position in the rabbit beta-globin pre-mRNA also resulted in splicing inhibition. Taken together, our results suggest that ASF/SF2 encode distinct domains responsible for its function as a splicing enhancer or splicing repressor protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号