共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Ikari A Sawada H Sanada A Tonegawa C Yamazaki Y Sugatani J 《Journal of cellular biochemistry》2011,112(12):3563-3572
Lack of magnesium suppresses cell growth, but the molecular mechanism is not examined in detail. We examined the effect of extracellular magnesium deficiency on cell cycle progression and the expression of cell cycle regulators in renal epithelial NRK-52E cells. In synchronized cells caused by serum-starved method, over 80% cells were distributed in G1 phase. Cell proliferation and percentage of the cells in S phase in the presence of MgCl(2) were higher than those in the absence of MgCl(2) , suggesting that magnesium is involved in the cell cycle progression from G1 to S phase. After serum addition, the expression levels of p21(Cip1) and p27(Kip1) in the absence of MgCl(2) were higher than those in the presence of MgCl(2) . The exogenous expression of p21(Cip1) or p27(Kip1) increased the percentage in G1 phase, whereas it decreased that in S phase. The mRNA levels and promoter activities of p21(Cip1) and p27(Kip1) in the absence of MgCl(2) were higher than those in the presence of MgCl(2) . The phosphorylated p53 (p-p53) level was decreased by MgCl(2) addition. Pifithrin-α, a p53 inhibitor, decreased the p-p53, p21(Cip1) and p27(Kip1) levels, and the percentage in G1 phase in the absence of MgCl(2) . Rotenone, a mitochondrial respiratory inhibitor, decreased ATP content and increased the p-p53 level in the presence of MgCl(2) . Together, lack of magnesium may increase p21(Cip1) and p27(Kip1) levels mediated by the decrease in ATP content and the activation of p53, resulting in the suppression of cell cycle progression from G1 to S phase in NRK-52E cells. 相似文献
4.
Comstock AT Ganesan S Chattoraj A Faris AN Margolis BL Hershenson MB Sajjan US 《Journal of virology》2011,85(13):6795-6808
Previously, we showed that rhinovirus (RV), which is responsible for the majority of common colds, disrupts airway epithelial barrier function, as evidenced by reduced transepithelial resistance (R(T)), dissociation of zona occludins 1 (ZO-1) from the tight junction complex, and bacterial transmigration across polarized cells. We also showed that RV replication is required for barrier function disruption. However, the underlying biochemical mechanisms are not known. In the present study, we found that a double-stranded RNA (dsRNA) mimetic, poly(I:C), induced tight junction breakdown and facilitated bacterial transmigration across polarized airway epithelial cells, similar to the case with RV. We also found that RV and poly(I:C) each stimulated Rac1 activation, reactive oxygen species (ROS) generation, and Rac1-dependent NADPH oxidase 1 (NOX1) activity. Inhibitors of Rac1 (NSC23766), NOX (diphenylene iodonium), and NOX1 (small interfering RNA [siRNA]) each blocked the disruptive effects of RV and poly(I:C) on R(T), as well as the dissociation of ZO-1 and occludin from the tight junction complex. Finally, we found that Toll-like receptor 3 (TLR3) is not required for either poly(I:C)- or RV-induced reductions in R(T). Based on these results, we concluded that Rac1-dependent NOX1 activity is required for RV- or poly(I:C)-induced ROS generation, which in turn disrupts the barrier function of polarized airway epithelia. Furthermore, these data suggest that dsRNA generated during RV replication is sufficient to disrupt barrier function. 相似文献
5.
Rohlfing AK Schill T Müller C Hildebrandt P Prowald A Hildebrandt JP 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2005,175(7):511-522
Cell cycle arrest in potentially dividing cells is often mediated by inhibitors of G1/S-phase cyclin-dependent kinases. The
cyclin E/CDK2-inhibitor p27Kip1 has been implicated in this context in epithelial cells. We cloned and sequenced p27Kip1 of ducklings (Anas platyrhynchos) and used an in vitro assay system to study the mechanism of p27Kip1 downregulation in the nasal gland which precedes an increase in proliferation rate upon initial exposure of the animals to
osmotic stress. Western blot studies revealed that p27Kip1 is downregulated during 24 h of osmotic stress in ducklings with the steepest decline in protein levels between 5 and 8 h.
As indicated by the results of Northern blot and semi-quantitative PCR studies, protein downregulation is not accompanied
by similar changes in mRNA levels indicating that Kip1 is regulated mainly at the translational (synthesis) or posttranslational
level (degradation). Using recombinant duck Kip1 protein expressed in E. coli, we showed that Kip1 is subject to polyubiquitinylation by cytosolic enzymes from nasal gland cells indicating that loss
of Kip1 may be regulated, at least in part, by acceleration of protein degradation. In cultured nasal gland tissue, attenuation
of Kip1 expression could be induced by activation of the muscarinic acetylcholine receptor indicating that mAChR-receptor
signalling may play a role in the re-entry of quiescent gland cells into the cell cycle. 相似文献
6.
Appleman LJ van Puijenbroek AA Shu KM Nadler LM Boussiotis VA 《Journal of immunology (Baltimore, Md. : 1950)》2002,168(6):2729-2736
CD28 provides a costimulatory signal that cooperates with the TCR/CD3 complex to induce T cell activation, cytokine production, and clonal expansion. We have recently shown that CD28 directly regulates progression of T lymphocytes through the cell cycle. Although a number of signaling pathways have been linked to the TCR/CD3 and to CD28, it is not known how these two receptors cooperate to induce cell cycle progression. Here, using cell-permeable pharmacologic inhibitors of phosphatidylinositol 3-hydroxykinase (PI3K) and mitogen-activated protein kinase kinase (MEK1/2), we show that cell cycle progression of primary T lymphocytes requires simultaneous activation of PI3K- and MEK1/2-dependent pathways. Decreased abundance of cyclin-dependent kinase inhibitor p27(kip1), which requires simultaneous TCR/CD3 and CD28 ligation, was dependent upon both MEK and PI3K activity. Ligation of TCR/CD3, but not CD28 alone, resulted in activation of MEK targets extracellular signal-related kinase 1/2, whereas ligation of CD28 alone was sufficient for activation of PI3K target protein kinase B (PKB; c-Akt). CD28 ligation alone was also sufficient to mediate inactivating phosphorylation of PKB target glycogen synthase kinase-3 (GSK-3). Moreover, direct inactivation of GSK-3 by LiCl in the presence of anti-CD3, but not in the presence of anti-CD28, resulted in down-regulation of p27(kip1), hyperphosphorylation of retinoblastoma tumor suppressor gene product, and cellular proliferation. Thus, inactivation of the PI3K-PKB target GSK-3 could substitute for CD28 but not for CD3 signals. These results show that the PI3K-PKB pathway links CD28 to cell cycle progression and suggest that p27(kip1) integrates mitogenic MEK- and PI3K-dependent signals from TCR and CD28 in primary T lymphocytes. 相似文献
7.
Sustained blood cell production requires preservation of a quiescent, multipotential stem cell pool that intermittently gives rise to progenitors with robust proliferative potential. The ability of cells to shift from a highly constrained to a vigorously active proliferative state is critical for maintaining stem cells while providing the responsiveness necessary for host defense. The cyclin-dependent kinase inhibitor (CDKI), p21(cip1/waf1) (p21) dominates stem cell kinetics. Here we report that another CDKI, p27(kip1) (p27), does not affect stem cell number, cell cycling, or self-renewal, but markedly alters progenitor proliferation and pool size. Therefore, distinct CDKIs govern the highly divergent stem and progenitor cell populations. When competitively transplanted, p27-deficient stem cells generate progenitors that eventually dominate blood cell production. Modulating p27 expression in a small number of stem cells may translate into effects on the majority of mature cells, thereby providing a strategy for potentiating the impact of transduced cells in stem cell gene therapy. 相似文献
8.
The accumulation of unfolded proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR), a stress signaling pathway. The UPR coordinates the induction of ER chaperones with decreased protein synthesis and growth arrest in G1 phase of the cell cycle. However, the molecular mechanism underlying UPR-induced G1 cell cycle arrest remains largely unknown. Here we report that activation of the UPR response by tunicamycin (TM), an ER stress inducer, leads to accumulation of p27 and G1 cell cycle arrest in melanoma cells. This accumulation of p27 is due to the inhibition on its polyubiquitination and subsequent degradation upon TM treatment. Correlated with p27 stabilization, the levels of Skp2, an E3 ligase for p27, are decreased in response to TM treatment. More importantly, knockdown of p27 greatly reduces TM-induced G1 cell cycle arrest. Taken together, these data implicate p27 as a critical mediator of ER stress-induced growth arrest. 相似文献
9.
10.
Density-dependent growth inhibition of fibroblasts ectopically expressing p27(kip1) 总被引:1,自引:0,他引:1 下载免费PDF全文
Zhang X Wharton W Donovan M Coppola D Croxton R Cress WD Pledger WJ 《Molecular biology of the cell》2000,11(6):2117-2130
The cyclin/cyclin-dependent kinase (cdk) inhibitor p27(kip1) is thought to be responsible for the onset and maintenance of the quiescent state. It is possible, however, that cells respond differently to p27(kip1) in different conditions, and using a BALB/c-3T3 cell line (termed p27-47) that inducibly expresses high levels of this protein, we show that the effect of p27(kip1) on cell cycle traverse is determined by cell density. We found that ectopic expression of p27(kip1) blocked the proliferation of p27-47 cells at high density but had little effect on the growth of cells at low density whether exponentially cycling or stimulated from quiescence. Regardless of cell density, the activities of cdk4 and cdk2 were markedly repressed by p27(kip1) expression, as was the cdk4-dependent dissociation of E2F4/p130 complexes. Infection of cells with SV40, a DNA tumor virus known to abrogate formation of p130- and Rb-containing complexes, allowed dense cultures to proliferate in the presence of supraphysiological amounts of p27(kip1) but did not stimulate cell cycle traverse when cultures were cotreated with the potent cdk2 inhibitor roscovitine. Our data suggest that residual levels of cyclin/cdk activity persist in p27(kip1)-expressing p27-47 cells and are sufficient for the growth of low-density cells and of high-density cells infected with SV40, and that effective disruption of p130 and/or Rb complexes is obligatory for the proliferation of high-density cultures. 相似文献
11.
《Cell cycle (Georgetown, Tex.)》2013,12(11):2057-2058
Comment on: Moss SC, et al. J Biol Chem 2010; In press. 相似文献
12.
p27(Kip1) (p27), a prototypical intrinsically disordered protein (IDP), regulates eukaryotic cell division through interactions with cyclin-dependent kinase (Cdk)/cyclin complexes. The activity, stability, and subcellular localization of p27 are regulated by phosphorylation. We illustrate how p27 integrates regulatory signals from several non-receptor tyrosine kinases (NRTKs) to activate Cdk4 and initiate cell cycle entry. Unmodified p27 potently inhibits Cdk/cyclin complexes, including Cdk4/cyclin D (IC(50), 1 nM). Some NRTKs (e.g., Abl) phosphorylate p27 on Tyr 88, which facilitates a second modification on Tyr 74 by another NRTK (e.g., Src). Importantly, this second modification causes partial reactivation of Cdk4 within ternary complexes containing doubly Tyr phosphorylated p27. Partial activation of Cdk4 initiates entry into the cell division cycle. Therefore, p27's disordered features enable NRTKs to sequentially promote a phosphorylation cascade that controls cell fate. Beyond cell cycle control, these results illustrate general concepts regarding why IDPs are well-suited for roles in signaling and regulation in biological systems. 相似文献
13.
14.
Novel p27(kip1) C-terminal scatter domain mediates Rac-dependent cell migration independent of cell cycle arrest functions 总被引:6,自引:0,他引:6
McAllister SS Becker-Hapak M Pintucci G Pagano M Dowdy SF 《Molecular and cellular biology》2003,23(1):216-228
Hepatocyte growth factor (HGF) signaling via its receptor, the proto-oncogene Met, alters cell proliferation and motility and has been associated with tumor metastasis. HGF treatment of HepG2 human hepatocellular carcinoma cells induces cell migration concomitant with increased levels of the p27(kip1) cyclin-cdk inhibitor. HGF signaling resulted in nuclear export of endogenous p27 to the cytoplasm, via Ser-10 phosphorylation, where it colocalized with F-actin. Introduction of transducible p27 protein (TATp27) was sufficient for actin cytoskeletal rearrangement and migration of HepG2 cells. TATp27 mutational analysis identified a novel p27 C-terminal domain required for cell migration, distinct from the N-terminal cyclin-cyclin-dependent kinase (cdk) binding domain. Loss or disruption of the p27 C-terminal domain abolished both actin rearrangement and cell migration. The cell-scattering activity of p27 occurred independently of its cell cycle arrest functions and required cytoplasmic localization of p27 via Ser-10 phosphorylation. Furthermore, Rac GTPase was necessary for p27-dependent migration but alone was insufficient for HepG2 cell migration. These results predicted a migration defect in p27-deficient cells. Indeed, p27-deficient primary fibroblasts failed to migrate, and reconstitution with TATp27 rescued the motility defect. These observations define a novel role for p27 in cell motility that is independent of its function in cell cycle inhibition. 相似文献
15.
Galea CA Nourse A Wang Y Sivakolundu SG Heller WT Kriwacki RW 《Journal of molecular biology》2008,376(3):827-838
p27Kip1 (p27), which controls eukaryotic cell division through interactions with cyclin-dependent kinases (Cdks), integrates and transduces promitogenic signals from various nonreceptor tyrosine kinases by orchestrating its own phosphorylation, ubiquitination and degradation. Intrinsic flexibility allows p27 to act as a “conduit” for sequential signaling mediated by tyrosine and threonine phosphorylation and ubiquitination. While the structural features of the Cdk/cyclin-binding domain of p27 are understood, how the C-terminal regulatory domain coordinates multistep signaling leading to p27 degradation is poorly understood. We show that the 100-residue p27 C-terminal domain is extended and flexible when p27 is bound to Cdk2/cyclin A. We propose that the intrinsic flexibility of p27 provides a molecular basis for the sequential signal transduction conduit that regulates p27 degradation and cell division. Other intrinsically unstructured proteins possessing multiple sites of posttranslational modification may participate in similar signaling conduits. 相似文献
16.
《Cell cycle (Georgetown, Tex.)》2013,12(13):2038-2046
Tissue homeostasis requires precise control of cell proliferation and arrest in response to environmental cues. In situation such as wound healing, injured cells are stimulated to divide, but as soon as confluence is reached proliferation must be blocked. Such reversible cell cycle exit occurs in G1, requires pRb family members, and is driven by p27Kip1-dependent Cdk inactivation. This implies that, while dividing, cells should simultaneously prepare the exit once mitosis is accomplished. For a long time, the decision to cycle or not was presumed to occur in G1, prior to the restriction point, beyond which the cells were bound to divide even in the absence of mitogens, before finally arresting after mitosis. However, more recent reports suggested that the commitment to cycle in response to serum occurs already in G2 phase and requires the Ras-dependent induction of cyclin D1, which promotes following G1/S transition. To test whether this hypothesis applies to arrest induced by contact inhibition, we used an in vitro wounding model where quiescent human dermal fibroblasts, stimulated to proliferate by mechanical injury, synchronously exit cell cycle after mitosis due to renewed confluence. We show that this exit is preceded by p27-dependent inhibition of cyclin A-Cdk1/2, cyclin D1 downregulation and reduced pre-mitotic pRb pocket protein phosphorylation. Over-expression of cyclin D1 but not p27 depletion reversed this phenotype and compromised confluence-driven cell cycle exit. Thus, a balance between cyclin D1 and p27 may provide sensitive responses to variations in proliferative cues operating throughout the cell cycle. 相似文献
17.
18.
19.
Zhou Y Wang Q Mark Evers B Chung DH 《Biochemical and biophysical research communications》2006,350(4):860-865
Free oxygen radicals are involved in the pathogenesis of necrotizing enterocolitis (NEC) in premature infants. The stress-activated p38 mitogen-activated protein kinase (MAPK) has been implicated in gut injury. Here, we found that phosphorylated p38 was detected primarily in the villus tips of normal intestine, whereas it was expressed in the entire mucosa in NEC. H(2)O(2) treatment resulted in a rapid phosphorylation of p38 MAPK and subsequent apoptosis of rat intestinal epithelial (RIE)-1 cells; this induction was attenuated by treatment with SB203580, a selective p38 MAPK inhibitor, or transfection with p38alpha siRNA. Moreover, SB203580 also blocked H(2)O(2)-induced PKC activation. In contrast, the PKC inhibitor (GF109203x) did not affect p38 activation, indicating that p38 MAPK activation occurs upstream of PKC activation in H(2)O(2)-induced apoptosis. H(2)O(2) treatment also decreased mitochondrial membrane potential; pretreatment with SB203580 attenuated this response. Our study demonstrates that the p38 MAPK/PKC pathway plays an important role as a pro-apoptotic cellular signaling during oxidative stress-induced intestinal epithelial cell injury. 相似文献
20.
Gabellini C Pucci B Valdivieso P D'Andrilli G Tafani M De Luca A Masciullo V 《Journal of cellular biochemistry》2006,98(6):1645-1652
p27kip1 is a cyclin-dependent kinase (CDK) inhibitor, which controls several cellular processes in strict collaboration with pRb. We evaluated the role of p27kip1 in paclitaxel-induced apoptosis in the pRb-defective SaOs-2 cells. Following 48 h of exposure of SaOs-2 cells to 100 nM paclitaxel, we observed an increase in p27kip1 expression caused by the decrease of the ubiquitin-proteasome activity. Such increase was not observed in SaOs-2 cells treated with the caspase inhibitors Z-VAD-FMK, suggesting that p27kip1 enhancement at 48 h is strictly related to apoptosis. Finally, we demonstrated that SaOs-2 cells transiently overexpressing the p27kip1 protein are more susceptible to paclitaxel-induced apoptosis than SaOs-2 cells transiently transfected with the empty vector. Indeed, after 48 h of paclitaxel treatment, 41.8% of SaOs-2 cells transiently transfected with a pcDNA3-p27kip1 construct were Annexin V-positive compared to 30.6% of SaOs-2 cells transfected with the empty vector (P < 0.05). In conclusion, we demonstrated that transfection of the pRb-defective SaOs-2 cells with the p27kip1 gene via plasmid increases their susceptibility to paclitaxel-induced apoptosis. The promoting effect of p27kip1 overexpression on apoptosis makes p27kip1 and proteasomal inhibitors interesting tools for therapy in patients with pRb-defective cancers. 相似文献