首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Androgen has anabolic effects on cardiac myocytes and has been shown to enhance left ventricular enlargement and function. However, the physiological and patho-physiological roles of androgen in cardiac growth and cardiac stress-induced remodeling remains unclear. We aimed to clarify whether the androgen-nuclear androgen receptor (AR) system contributes to the cardiac growth and angiotensin II (Ang II)-stimulated cardiac remodeling by using systemic AR-null male mice. AR knock-out (ARKO) male mice, at 25 weeks of age, and age-matched wild-type (WT) male mice were treated with or without Ang II stimulation (2.0 mg/kg/day) for 2 weeks. ARKO mice with or without Ang II stimulation showed a significant reduction in the heart-to-body weight ratio compared with those of WT mice. In addition, echocardiographic analysis demonstrated impairments of both the concentric hypertrophic response and left ventricular function in Ang II-stimulated ARKO mice. Western blot analysis of the myocardium revealed that activation of extracellular signal-regulated kinases (ERK) 1/2 and ERK5 by Ang II stimulation were lower in ARKO mice than those of WT mice. Ang II stimulation caused more prominent cardiac fibrosis in ARKO mice than in WT mice with enhanced expression of types I and III collagen and transforming growth factor-beta1 genes and with increased Smad2 activation. These results suggest that, in male mice, the androgen-AR system participates in normal cardiac growth and modulates cardiac adaptive hypertrophy and fibrosis during the process of cardiac remodeling under hypertrophic stress.  相似文献   

2.
Chronic hypertension induces cardiac remodeling, including left ventricular hypertrophy and fibrosis, through a combination of both hemodynamic and humoral factors. In previous studies, we showed that the heptapeptide ANG-(1-7) prevented mitogen-stimulated growth of cardiac myocytes in vitro, through a reduction in the activity of the MAPKs ERK1 and ERK2. In this study, saline- or ANG II-infused rats were treated with ANG-(1-7) to determine whether the heptapeptide reduces myocyte hypertrophy in vivo and to identify the signaling pathways involved in the process. ANG II infusion into normotensive rats elevated systolic blood pressure >50 mmHg, in association with increased myocyte cross-sectional area, ventricular atrial natriuretic peptide mRNA, and ventricular brain natriuretric peptide mRNA. Although infusion with ANG-(1-7) had no effect on the ANG II-stimulated elevation in blood pressure, the heptapeptide hormone significantly reduced the ANG II-mediated increase in myocyte cross-sectional area, interstitial fibrosis, and natriuretic peptide mRNAs. ANG II increased phospho-ERK1 and phospho-ERK2, whereas cotreatment with ANG-(1-7) reduced the phosphorylation of both MAPKs. Neither ANG II nor ANG-(1-7) altered the ERK1/2 MAPK kinase MEK1/2. However, ANG-(1-7) infusion, with or without ANG II, increased the MAPK phosphatase dual-specificity phosphatase (DUSP)-1; in contrast, treatment with ANG II had no effect on DUSP-1, suggesting that ANG-(1-7) upregulates DUSP-1 to reduce ANG II-stimulated ERK activation. These results indicate that ANG-(1-7) attenuates cardiac remodeling associated with a chronic elevation in blood pressure and upregulation of a MAPK phosphatase and may be cardioprotective in patients with hypertension.  相似文献   

3.
After myocardial infarction (MI), the left ventricle (LV) undergoes ventricular remodeling characterized by progressive global dilation, infarct expansion, and compensatory hypertrophy of the noninfarcted myocardium. Little attention has been given to the response of remodeling myocardium to additional hemodynamic overload. Studies have indicated that gender may influence remodeling and the response to both MI and hemodynamic overload. We therefore determined 1) structural and function consequences of superimposing hemodynamic overload (systemic hypertension) on remodeling myocardium after a MI and 2) the potential influence of gender on this remodeling response. Male and female Dahl salt-sensitive and salt-resistant rats underwent coronary ligation, resulting in similar degrees of MI. One week post-MI, all rats were placed on a high-salt diet. Four groups were then studied 4 wk after initiation of high-salt feeding: MI female, MI female + hypertension, MI male, and MI male + hypertension. Hypertension-induced pressure overload resulted in additional comparable degrees of myocardial hypertrophy in both females and males. In females, hypertension post-MI resulted in concentric hypertrophy with no additional cavity dilation and no measurable scar thinning. In contrast, in males, hypertension post-MI resulted in eccentric hypertrophy, further LV cavity dilation, and scar thinning. Physiologically, concentric hypertrophy in post-MI hypertensive females resulted in elevated contractile function, whereas eccentrically hypertrophied males had no such increase. Female gender influences favorably the remodeling and physiological response to hemodynamic overload after large MI.  相似文献   

4.
Myocardial infarction (MI) is a major cause of heart failure (HF) with the progressive worsening of cardiac performance due to structural and functional alterations. Therefore, we studied cardiac function in adult mice following MI using the Millar pressure-volume (P-V) conductance catheter system in vivo during the later phase of compensatory remodeling and decompensation to HF. We evaluated load-dependent and -independent parameters in control and 2-, 4-, 6-, and 10-wk post-MI mice and integrated changes in function with changes in gene expression. Our results indicated a significant deterioration of cardiac function in post-MI mice over time, reflected first by systolic dysfunction, followed by a transient improvement before further decline in both systolic and diastolic function. Associated with the function and adaptive remodeling were transient changes in fetal gene and extracellular matrix gene expression. However, undermining the compensatory remodeling response was a continual decline in cardiac contractility, which promoted the transition into failure. Our study provided a scheme of integrated cardiac function and gene expression changes occurring during the adaptive and maladaptive response of the heart independent of systemic vascular properties during the transition to HF following MI in mice. P-V loop analysis was used to quantitatively evaluate the gradual deterioration in cardiac function post-MI. P-V loop analysis was found to be an appropriate method for assessment of global cardiac function under varying load-dependent and -independent conditions in the murine model with many similarities to data obtained from larger animals and humans.  相似文献   

5.
Reactive oxygen species (ROS) induce matrix metalloproteinase (MMP) activity that mediates hypertrophy and cardiac remodeling. Adiponectin (APN), an adipokine, modulates cardiac hypertrophy, but it is unknown if APN inhibits ROS-induced cardiomyocyte remodeling. We tested the hypothesis that APN ameliorates ROS-induced cardiomyocyte remodeling and investigated the mechanisms involved. Cultured adult rat ventricular myocytes (ARVM) were pretreated with recombinant APN (30 μg/ml, 18 h) followed by exposure to physiologic concentrations of H(2)O(2) (1-200 μM). ARVM hypertrophy was measured by [(3)H]leucine incorporation and atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) gene expression by RT-PCR. MMP activity was assessed by in-gel zymography. ROS was induced with angiotensin (ANG)-II (3.2 mg·kg(-1)·day(-1) for 14 days) in wild-type (WT) and APN-deficient (APN-KO) mice. Myocardial MMPs, tissue inhibitors of MMPs (TIMPs), p-AMPK, and p-ERK protein expression were determined. APN significantly decreased H(2)O(2)-induced cardiomyocyte hypertrophy by decreasing total protein, protein synthesis, ANF, and BNP expression. H(2)O(2)-induced MMP-9 and MMP-2 activities were also significantly diminished by APN. APN significantly increased p-AMPK in both nonstimulated and H(2)O(2)-treated ARVM. H(2)O(2)-induced p-ERK activity and NF-κB activity were both abrogated by APN pretreatment. ANG II significantly decreased myocardial p-AMPK and increased p-ERK expression in vivo in APN-KO vs. WT mice. ANG II infusion enhanced cardiac fibrosis and MMP-2-to-TIMP-2 and MMP-9-to-TIMP-1 ratios in APN-KO vs. WT mice. Thus APN inhibits ROS-induced cardiomyocyte remodeling by activating AMPK and inhibiting ERK signaling and NF-κB activity. Its effects on ROS and ultimately on MMP expression define the protective role of APN against ROS-induced cardiac remodeling.  相似文献   

6.
Left ventricular (LV) remodeling after myocardial infarction (MI) results from hypertrophy of myocytes and activation of fibroblasts induced, in part, by ligand stimulation of the ANG II type 1 receptor (AT1R). The purpose of the present study was to explore the specific role for activation of the AT 1a R subtype in post-MI remodeling and whether gender differences exist in the patterns of remodeling in wild-type and AT 1a R knockout (KO) mice. AT 1a R-KO mice and wild-type littermates underwent coronary ligation to induce MI or sham procedures; echocardiography and hemodynamic evaluation were performed 6 wk later, and LV tissue was harvested for infarct size determination, morphometric measurements, and gene expression analysis. Survival and infarct size were similar among all male and female wild-type and AT 1a R-KO mice. Hemodynamic indexes were also similar except for lower systolic blood pressure in the AT 1a R-KO mice compared with wild-type mice. Male and female wild-type and male AT 1a R-KO mice developed similar increases in LV chamber size, LV mass corrected for body weight (LV/BW), and myocyte cross-sectional area (CSA). However, female AT 1a R-KO mice demonstrated no increase in LV/BW and myocyte CSA post-MI compared with shams. Both male and female wild-type mice demonstrated higher atrial natriuretic peptide (ANP) levels after MI, with female wild types being significantly greater than males. However, male and female AT 1a R-KO mice developed no increase in ANP gene expression with MI despite an increase in LV mass and myocyte size in males. These data support that gender-specific patterns of LV and myocyte hypertrophy exist after MI in mice with a disrupted AT 1a R gene, and suggest that myocyte hypertrophy post-MI in females relies, in part, on activation of the AT 1a R. Further work is necessary to explore the potential mechanisms underlying these gender-based differences.  相似文献   

7.
Cavasin MA  Tao Z  Menon S  Yang XP 《Life sciences》2004,75(18):2181-2192
There are conflicting data about gender differences in cardiac function after myocardial infarction (MI), including cardiac rupture and mortality. Using a mouse model of MI, we recently found that the cardiac rupture rate during the first week after MI was significantly lower in females than in males, suggesting that females have attenuated structural remodeling. Thus in this study, we attempted to determine whether: a) females have attenuated remodeling and faster healing during the early phase post-MI, and b) females have better cardiac function and outcome during the chronic phase compared to males. MI was induced in 12-week-old male and female C57BL/6J mice. Signs of early remodeling, including cardiac rupture, infarct expansion, inflammatory response, and collagen deposition, were studied during the first 2 weeks post-MI. Left ventricular remodeling and function were followed for 12 weeks post-MI. We found that males had a higher rate of cardiac rupture, occurring mainly at 3 to 5 days of MI and associated with a higher infarct expansion index. Neutrophil infiltration at the infarct border was more pronounced in males than females during the first days of MI, which were also characterized by increased MMP activity. However, the number of infiltrating macrophages was significantly higher in females at day 4. During the chronic phase post-MI, males had significantly poorer LV function, more prominent dilatation and significant myocyte hypertrophy compared to females. In conclusion, males have delayed myocardial healing, resulting in cardiac rupture, and the survivors have poorer cardiac function and pronounced maladaptive remodeling, whereas females show a better outcome during the development of HF.  相似文献   

8.
Oxidative stress is implicated in menopause-associated hypertension and cardiovascular disease. The role of antioxidants in this process is unclear. We questioned whether the downregulation of thioredoxin (TRX) is associated with oxidative stress and the development of hypertension and target-organ damage (cardiac hypertrophy) in a menopause model. TRX is an endogenous antioxidant that also interacts with signaling molecules, such as apoptosis signal-regulated kinase 1 (ASK-1), independently of its antioxidant function. Aged female wild-type (WT) and follitropin receptor knockout (FORKO) mice (20-24 wk), with hormonal imbalances, were studied. Mice were infused with ANG II (400 ng x kg(-1) x min(-1); 14 days). Systolic blood pressure was increased by ANG II in WT (166+/-8 vs. 121+/-5 mmHg) and FORKO (176+/-7 vs. 115+/-5 mmHg; P<0.0001; n=9/group) mice. In ANG II-infused FORKO mice, cardiac mass was increased by 42% (P<0.001). This was associated with increased collagen content and augmented ERK1/2 phosphorylation (2-fold). Cardiac TRX expression and activity were decreased by ANG II in FORKO but not in WT (P<0.01) mice. ASK-1 expression, cleaved caspase III content, and Bax/Bcl-2 content were increased in ANG II-infused FORKO (P<0.05). ANG II had no effect on cardiac NAD(P)H oxidase activity or on O(2)(*-) levels in WT or FORKO. Cardiac ANG II type 1 receptor expression was similar in FORKO and WT. These findings indicate that in female FORKO, ANG II-induced cardiac hypertrophy and fibrosis are associated with the TRX downregulation and upregulation of ASK-1/caspase signaling. Our data suggest that in a model of menopause, protective actions of TRX may be blunted, which could contribute to cardiac remodeling independently of oxidative stress and hypertension.  相似文献   

9.
10.
Cardiac remodeling, which typically results from chronic hypertension or following an acute myocardial infarction, is a major risk factor for the development of heart failure and, ultimately, death. The renin-angiotensin system (RAS) has previously been established to play an important role in the progression of cardiac remodeling, and inhibition of a hyperactive RAS provides protection from cardiac remodeling and subsequent heart failure. Our previous studies have demonstrated that overexpression of angiotensin-converting enzyme 2 (ACE2) prevents cardiac remodeling and hypertrophy during chronic infusion of angiotensin II (ANG II). This, coupled with the knowledge that ACE2 is a key enzyme in the formation of ANG-(1-7), led us to hypothesize that chronic infusion of ANG-(1-7) would prevent cardiac remodeling induced by chronic infusion of ANG II. Infusion of ANG II into adult Sprague-Dawley rats resulted in significantly increased blood pressure, myocyte hypertrophy, and midmyocardial interstitial fibrosis. Coinfusion of ANG-(1-7) resulted in significant attenuations of myocyte hypertrophy and interstitial fibrosis, without significant effects on blood pressure. In a subgroup of animals also administered [d-Ala(7)]-ANG-(1-7) (A779), an antagonist to the reported receptor for ANG-(1-7), there was a tendency to attenuate the antiremodeling effects of ANG-(1-7). Chronic infusion of ANG II, with or without coinfusion of ANG-(1-7), had no effect on ANG II type 1 or type 2 receptor binding in cardiac tissue. Together, these findings indicate an antiremodeling role for ANG-(1-7) in cardiac tissue, which is not mediated through modulation of blood pressure or altered cardiac angiotensin receptor populations and may be at least partially mediated through an ANG-(1-7) receptor.  相似文献   

11.
Blockade of ANG II type 1A receptor (AT(1A)) is known to attenuate postinfarction [postmyocardial infarction (post-MI)] heart failure, accompanying reduction in fibrosis of the noninfarcted area. In the present study, we investigated the influence of AT(1A) blockade on the infarcted tissue itself. Consistent with earlier reports, AT(1A) knockout (AT(1A)KO) mice showed significantly attenuated left ventricular (LV) remodeling (dilatation) and dysfunction compared with wild-type (WT) mice. Morphometry revealed that the infarcted wall was thicker and had a smaller circumferential length in AT(1A)KO than WT hearts. In addition, significantly greater numbers of cells were present within infarcts in AT(1A)KO hearts 4 wk post-MI; most notably, there was an abundance of vessels and myofibroblasts. One week post-MI, the incidence of apoptosis among granulation tissue cells was fewer (3.3 +/- 0.4 vs. 4.4 +/- 0.5% in WT, P < 0.05), whereas vessel proliferation was higher in AT(1A)KO hearts, which likely explains the later abundance of cells within the scar tissue. Insulin-like growth factor receptor-I was upregulated and its downstream signal protein kinase B (Akt) was significantly activated in infarcted AT(1A)KO hearts compared with WT hearts. Inactivation of Akt with wortmannin partially but significantly prevented the benefits observed in AT(1A)KO. Collectively, in AT(1A)KO hearts, Akt-mediated granulation tissue cell proliferation and preservation resulting from antiapoptosis likely contributed to an abundant cell population that altered the infarct scar structure, thereby reducing wall stress and attenuating LV dilatation and dysfunction at the chronic stage. In conclusion, altered structural dynamics of infarct scar and increasing myocardial fibrosis may be responsible for the deleterious effects of AT(1A) signaling following MI.  相似文献   

12.
Hearts of normotensive angiotensin II type 2 receptor (AT2)-deficient mice do not develop fibrosis after angiotensin II-induced chronic hypertension. Thus, the goal of our study was to clarify whether AT2 knockouts (KOs) are also characterized by altered left ventricular (LV) function and modified remodeling of the extracellular matrix (ECM) after induction of myocardial infarction (MI). MI was induced in 5-mo-old female AT2-deficient mice and controls by occlusion of the left coronary artery. Time-matched sham-operated animals served as controls. After 48 h, the first sets of mice were hemodynamically characterized using a pressure-tip catheter (n=8/group). We also obtained pressure volume loops using a microconductance catheter in additional sets of animals 3 wk after induction of MI (n=7/group). Finally, the collagen index was illustrated by Sirius red staining and quantified by digital analysis. Whereas the LV function of sham-operated animals did not differ between both genotypes, the collagen index was 44% lower in KO animals. Forty-eight hours and 3 wk post-MI, systolic and diastolic LV function were impaired in both AT2-deficient and wild-type (WT) animals to the same extent by approx 45%. No differences were found between the two genotypes with respect to LV hypertrophy and the fibrosis index in the infarcted and noninfarcted areas 3 wk post-MI. While AT2-KO mice had less cardiac collagen content under basal conditions, the receptor deficiency had no significant influence on LV function at the two investigated time points after induction of MI or on the remodeling of ECM at the latter time point. Thus, hypetension-induced fibrosis is probably triggered by other control mechanisms than fibrosis induced by MI.  相似文献   

13.
The pharmacological inhibition or genetic ablation of cyclophilin-D (CypD), a critical regulator of the mitochondrial permeability transition pore (mPTP), confers myocardial resistance to acute ischemia-reperfusion injury, but its role in post-myocardial infarction (MI) heart failure is unknown. The aim of this study was to determine whether mitochondrial CypD is also a therapeutic target for the treatment of post-MI heart failure. Wild-type (WT) and CypD(-/-) mice were subjected to either sham surgery or permanent ligation of the left main coronary artery to induce MI, and were assessed at either 2 or 28 days to determine the long-term effects of CypD ablation. After 2 days, myocardial infarct size was smaller and left ventricular (LV) function was better preserved in CypD(-/-) mice compared to WT mice. After 28 days, when compared to WT mice, in the CypD(-/-) mice, mortality was halved, myocardial infarct size was reduced, LV systolic function was better preserved, LV dilatation was attenuated and in the remote non-infarcted myocardium, there was less cardiomyocyte hypertrophy and interstitial fibrosis. Finally, ex vivo fibroblast proliferation was found to be reduced in CypD(-/-) cardiac fibroblasts, and in WT cardiac fibroblasts treated with the known CypD inhibitors, cyclosporin-A and sanglifehrin-A. Following an MI, mice lacking CypD have less mortality, smaller infarct size, better preserved LV systolic function and undergo less adverse LV remodelling. These findings suggest that the inhibition of mitochondrial CypD may be a novel therapeutic treatment strategy for post-MI heart failure.  相似文献   

14.
Left ventricular (LV) remodeling, including cardiomyocyte necrosis, scar formation, LV geometric changes, and cardiomyocyte hypertrophy, contributes to cardiac dysfunction and mortality after myocardial infarction (MI). Although precise cellular signaling mechanisms for LV remodeling are not fully elucidated, G(q) protein-coupled receptor signaling pathway, including diacylglycerol (DAG) and PKC, are involved in this process. DAG kinase (DGK) phosphorylates DAG and controls cellular DAG levels, thus acting as a negative regulator of PKC and subsequent cellular signaling. We previously reported that DGK inhibited angiotensin II and phenylephrine-induced activation of the DAG-PKC signaling and subsequent cardiac hypertrophy. The purpose of this study was to examine whether DGK modifies LV remodeling after MI. Left anterior descending coronary artery was ligated in transgenic mice with cardiac-specific overexpression of DGKzeta (DGKzeta-TG) and wild-type (WT) mice. LV chamber dilatation (4.12 +/- 0.10 vs. 4.53 +/- 0.32 mm, P < 0.01), reduction of LV systolic function (34.8 +/- 8.3% vs. 28.3 +/- 4.8%, P < 0.01), and increases in LV weight (95 +/- 3.6 vs. 111 +/- 4.1 mg, P < 0.05) and lung weight (160 +/- 15 vs. 221 +/- 25 mg, P < 0.05) at 4 wk after MI were attenuated in DGKzeta-TG mice compared with WT mice. In the noninfarct area, fibrosis fraction (0.51 +/- 0.04, P < 0.01) and upregulation of profibrotic genes, such as transforming growth factor-beta1 (P < 0.01), collagen type I (P < 0.05), and collagen type III (P < 0.01), were blocked in DGKzeta-TG mice. The survival rate at 4 wk after MI was higher in DGKzeta-TG mice than in WT mice (61% vs. 37%, P < 0.01). In conclusion, these results demonstrate the first evidence that DGKzeta suppresses LV structural remodeling and fibrosis and improves survival after MI. DGKzeta may be a potential novel therapeutic target to prevent LV remodeling after MI.  相似文献   

15.
Matrix metalloproteinase-2 (MMP-2) is prominently overexpressed both after myocardial infarction (MI) and in heart failure. However, its pathophysiological significance in these conditions is still unclear. We thus examined the effects of targeted deletion of MMP-2 on post-MI left ventricular (LV) remodeling and failure. Anterior MI was produced in 10- to 12-wk-old male MMP-2 knockout (KO) and sibling wild-type (WT) mice by ligating the left coronary artery. By day 28, MI resulted in a significant increase in mortality in association with LV cavity dilatation and dysfunction. The MMP-2 KO mice had a significantly better survival rate than WT mice (56% vs. 85%, P < 0.05), despite a comparable infarct size (50 +/- 3% vs. 51 +/- 3%, P = not significant), heart rate, and arterial blood pressure. The KO mice had a significantly lower incidence of LV rupture (10% vs. 39%, P < 0.05), which occurred within 7 days of MI. The KO mice exerted less LV cavity dilatation and improved fractional shortening after MI by echocardiography. The LV zymographic MMP-2 level significantly increased in WT mice after coronary artery ligation; however, this was completely prevented in KO mice. In contrast, the increase in the LV zymographic MMP-9 level after MI was similar between KO and WT mice. MMP-2 activation is therefore considered to contribute to an early cardiac rupture as well as late LV remodeling after MI. The inhibition of MMP-2 activation may therefore be a potentially useful therapeutic strategy to manage post-MI hearts.  相似文献   

16.
Mouse mast cell protease-4 (mMCP4) is a chymase that has been implicated in cardiovascular diseases, including myocardial infarction (MI). This study tested a direct role of mMCP4 in mouse post-MI cardiac dysfunction and myocardial remodeling. Immunoblot and immunofluorescent double staining demonstrated mMCP4 expression in cardiomyocytes from the infarct zone from mouse heart at 28 day post-MI. At this time point, mMCP4-deficient Mcpt4?/? mice showed no difference in survival from wild-type (WT) control mice, yet demonstrated smaller infarct size, improved cardiac functions, reduced macrophage content but increased T-cell accumulation in the infarct region compared with those of WT littermates. mMCP4-deficiency also reduced cardiomyocyte apoptosis and expression of TGF-β1, p-Smad2, and p-Smad3 in the infarct region, but did not affect collagen deposition or α-smooth muscle actin expression in the same area. Gelatin gel zymography and immunoblot analysis revealed reduced activities of matrix metalloproteinases and expression of cysteinyl cathepsins in the myocardium, macrophages, and T cells from Mcpt4?/? mice. Immunoblot analysis also found reduced p-Smad2 and p-Smad3 in the myocardium from Mcpt4?/? mice, yet fibroblasts from Mcpt4?/? mice showed comparable levels of p-Smad2 and p-Smad3 to those of WT fibroblasts. Flow cytometry, immunoblot analysis, and immunofluorescent staining demonstrated that mMCP4-deficiency reduced the expression of proapoptotic cathepsins in cardiomyocytes and protected cardiomyocytes from H2O2-induced apoptosis. This study established a role of mMCP4 in mouse post-MI dysfunction by regulating myocardial protease expression and cardiomyocyte death without significant impact on myocardial fibrosis or survival post-MI in mice.  相似文献   

17.
18.
We have previously shown that mouse embryonic stem (ES) cells transplanted following myocardial infarction (MI) differentiate into the major cell types in the heart and improve cardiac function. However, the extent of regeneration was relatively meager compared with the observed functional improvement. Therefore, we hypothesize that mechanisms in addition to regeneration contribute to the functional improvement from ES cell therapy. In this study, we examined the effect of mouse ES cells transplanted post-MI on cardiac apoptosis, fibrosis, and hypertrophy. MI was produced by left coronary artery ligation in C57BL/6 mice. Two different mouse ES cell lines, expressing enhanced green fluorescent protein and beta-galactosidase, respectively, were tested. Post-MI intramyocardial injection of 3 x 10(4) ES cells was compared with injection of medium alone. Terminal deoxynucleotidyl nick end labeling (TUNEL), immunofluorescence, and histology were used to examine the effect of transplanted ES cells on apoptosis, fibrosis, and hypertrophy. Two weeks post-MI, ES cell-transplanted hearts exhibited a significant decrease in TUNEL-stained nuclei (mean +/- SE; MI+medium = 12 +/- 1.5%; MI+ES cells = 6.6 +/- 1%, P < 0.05). TUNEL-positive nuclei were confirmed to be apoptotic by colabeling with a caspase-3 antibody. Cardiac fibrosis was 57% less in the MI+ES cell group compared with the MI + medium group (P < 0.05) as shown with Masson's trichrome staining. Picrosirius red staining confirmed a decreased amount of collagen present in the MI+ES cell group. Cardiomyocyte hypertrophy was significantly decreased following ES cell transplantation compared with medium control animals. In conclusion, transplanted mouse ES cells in the infarcted heart inhibit apoptosis, fibrosis, and hypertrophy, thereby reducing adverse remodeling.  相似文献   

19.
DOC-2 (differentially expressed in ovarian carcinoma) is involved in Ras-, beta-integrin-, PKC-, and transforming growth factor-beta-mediated cell signaling. These pathways are implicated in the accumulation of extracellular matrix proteins during progression of hypertrophy to heart failure; however, the role of DOC-2 in cardiac pathophysiology has never been examined. This study was undertaken to 1) analyze DOC-2 expression in primary cultures of cardiac fibroblasts and cardiac myocytes and in the heart following different types of hemodynamic overloads and 2) examine its role in growth factor-mediated ERK activation and collagen production. Pressure overload and volume overload were induced for 10 wk in Sprague-Dawley rats by aortic constriction and by aortocaval shunt, respectively. ANG II (0.3 mg.kg(-1).day(-1)) was infused for 2 wk. Results showed that, compared with myocytes, DOC-2 was found abundantly expressed in cardiac fibroblasts. Treatment of cardiac fibroblasts with ANG II and TPA resulted in increased expression of DOC-2. Overexpression of DOC-2 in cardiac fibroblasts led to inhibition of hypertrophy agonist-stimulated ERK activation and collagen expression. An inverse correlation between collagen and DOC-2 was observed in in vivo models of cardiac hypertrophy; in pressure overload and after ANG II infusion, increased collagen mRNA correlated with reduced DOC-2 levels, whereas in volume overload increased DOC-2 levels were accompanied by unchanged collagen mRNA. These data for the first time describe expression of DOC-2 in the heart and demonstrate its modulation by growth-promoting agents in cultured cardiac fibroblasts and in in vivo models of heart hypertrophy. Results suggest a role of DOC-2 in cardiac remodeling involving collagen expression during chronic hemodynamic overload.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号