首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SH Weinberg  L Tung 《PloS one》2012,7(7):e40477
Alternans is a beat-to-beat alternation of the cardiac action potential duration (APD) or intracellular calcium (Ca(i)) transient. In cardiac tissue, alternans can be spatially concordant or discordant, of which the latter has been shown to increase dispersion of repolarization and promote a substrate for initiation of ventricular fibrillation. Alternans has been studied almost exclusively under constant cycle length pacing conditions. However, heart rate varies greatly on a beat-by-beat basis in normal and pathological conditions. The purpose of this study was to determine if applying a repetitive but non-constant pacing pattern, specifically cycle length oscillation (CLO), promotes or suppresses a proarrhythmic substrate. We performed computational simulations and optical mapping experiments to investigate the potential consequences of CLO. In a single cell computational model, CLO induced APD and Ca(i) alternans, which became "phase-matched" with the applied oscillation. As a consequence of the phase-matching, in one-dimensional cable simulations, neonatal rat ventricular myocyte monolayers, and isolated adult guinea pig hearts CLO could transiently induce spatial and electromechanical discordant alternans followed by a steady-state of concordance. Our results demonstrated that under certain conditions, CLO can initiate ventricular fibrillation in the isolated hearts. On the other hand, CLO can also exert an antiarrhythmic effect by converting an existing state of discordant alternans to concordant alternans.  相似文献   

2.
Alternans of cardiac repolarization is associated with arrhythmias and sudden death. At the cellular level, alternans involves beat-to-beat oscillation of the action potential (AP) and possibly Ca(2+) transient (CaT). Because of experimental difficulty in independently controlling the Ca(2+) and electrical subsystems, mathematical modeling provides additional insights into mechanisms and causality. Pacing protocols were conducted in a canine ventricular myocyte model with the following results: 1) CaT alternans results from refractoriness of the sarcoplasmic reticulum Ca(2+) release system; alternation of the L-type calcium current has a negligible effect; 2) CaT-AP coupling during late AP occurs through the sodium-calcium exchanger and underlies AP duration (APD) alternans; 3) increased Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activity extends the range of CaT and APD alternans to slower frequencies and increases alternans magnitude; its decrease suppresses CaT and APD alternans, exerting an antiarrhythmic effect; and 4) increase of the rapid delayed rectifier current (I(Kr)) also suppresses APD alternans but without suppressing CaT alternans. Thus CaMKII inhibition eliminates APD alternans by eliminating its cause (CaT alternans) while I(Kr) enhancement does so by weakening CaT-APD coupling. The simulations identify combined CaMKII inhibition and I(Kr) enhancement as a possible antiarrhythmic intervention.  相似文献   

3.
Structural barriers to wave propagation in cardiac tissue are associated with a decreased threshold for repolarization alternans both experimentally and clinically. Using computer simulations, we investigated the effects of a structural barrier on the onset of spatially concordant and discordant alternans. We used two-dimensional tissue geometry with heterogeneity in selected potassium conductances to mimic known apex-base gradients. Although we found that the actual onset of alternans was similar with and without the structural barrier, the increase in alternans magnitude with faster pacing was steeper with the barrier--giving the appearance of an earlier alternans onset in its presence. This is consistent with both experimental structural barrier findings and the clinical observation of T-wave alternans occurring at slower pacing rates in patients with structural heart disease. In ionically homogeneous tissue, discordant alternans induced by the presence of the structural barrier arose at intermediate pacing rates due to a source-sink mismatch behind the barrier. In heterogeneous tissue, discordant alternans occurred during fast pacing due to a barrier-induced decoupling of tissue with different restitution properties. Our results demonstrate a causal relationship between the presence of a structural barrier and increased alternans magnitude and action potential duration dispersion, which may contribute to why patients with structural heart disease are at higher risk for ventricular tachyarrhythmias.  相似文献   

4.
Mechanical alternans in cardiac muscle is associated with intracellular Ca(2+) alternans. Mechanisms underlying intracellular Ca(2+) alternans are unclear. In previous experimental studies, we produced alternans of systolic Ca(2+) under voltage clamp, either by partially inhibiting the Ca(2+) release mechanism, or by applying small depolarizing pulses. In each case, alternans relied on propagating waves of Ca(2+) release. The aim of this study is to investigate by computer modeling how alternans of systolic Ca(2+) is produced. A mathematical model of a cardiac cell with 75 coupled elements is developed, with each element contains L-type Ca(2+) current, a subspace into which Ca release takes place, a cytoplasmic space, sarcoplasmic reticulum (SR) release channels [ryanodine receptor (RyR)], and uptake sites (SERCA). Interelement coupling is via Ca(2+) diffusion between neighboring subspaces via cytoplasmic spaces and network SR spaces. Small depolarizing pulses were simulated by step changes of cell membrane potential (20 mV) with random block of L-type channels. Partial inhibition of the release mechanism is mimicked by applying a reduction of RyR open probability in response to full stimulation by L-type channels. In both cases, systolic alternans follow, consistent with our experimental observations, being generated by propagating waves of Ca(2+) release and sustained through alternation of SR Ca(2+) content. This study provides novel and fundamental insights to understand mechanisms that may underlie intracellular Ca(2+) alternans without the need for refractoriness of L-type Ca or RyR channels under rapid pacing.  相似文献   

5.
Cellular electrophysiology experiments, important for understanding cardiac arrhythmia mechanisms, are usually performed with channels expressed in non myocytes, or with non-human myocytes. Differences between cell types and species affect results. Thus, an accurate model for the undiseased human ventricular action potential (AP) which reproduces a broad range of physiological behaviors is needed. Such a model requires extensive experimental data, but essential elements have been unavailable. Here, we develop a human ventricular AP model using new undiseased human ventricular data: Ca(2+) versus voltage dependent inactivation of L-type Ca(2+) current (I(CaL)); kinetics for the transient outward, rapid delayed rectifier (I(Kr)), Na(+)/Ca(2+) exchange (I(NaCa)), and inward rectifier currents; AP recordings at all physiological cycle lengths; and rate dependence and restitution of AP duration (APD) with and without a variety of specific channel blockers. Simulated APs reproduced the experimental AP morphology, APD rate dependence, and restitution. Using undiseased human mRNA and protein data, models for different transmural cell types were developed. Experiments for rate dependence of Ca(2+) (including peak and decay) and intracellular sodium ([Na(+)](i)) in undiseased human myocytes were quantitatively reproduced by the model. Early afterdepolarizations were induced by I(Kr) block during slow pacing, and AP and Ca(2+) alternans appeared at rates >200 bpm, as observed in the nonfailing human ventricle. Ca(2+)/calmodulin-dependent protein kinase II (CaMK) modulated rate dependence of Ca(2+) cycling. I(NaCa) linked Ca(2+) alternation to AP alternans. CaMK suppression or SERCA upregulation eliminated alternans. Steady state APD rate dependence was caused primarily by changes in [Na(+)](i), via its modulation of the electrogenic Na(+)/K(+) ATPase current. At fast pacing rates, late Na(+) current and I(CaL) were also contributors. APD shortening during restitution was primarily dependent on reduced late Na(+) and I(CaL) currents due to inactivation at short diastolic intervals, with additional contribution from elevated I(Kr) due to incomplete deactivation.  相似文献   

6.
Transgenic mice overexpressing tumor necrosis factor-α (TNF-α mice) possess many of the features of human heart failure, such as dilated cardiomyopathy, impaired Ca(2+) handling, arrhythmias, and decreased survival. Although TNF-α mice have been studied extensively with a number of experimental methods, the mechanisms of heart failure are not completely understood. We created a mathematical model that reproduced experimentally observed changes in the action potential (AP) and Ca(2+) handling of isolated TNF-α mice ventricular myocytes. To study the contribution of the differences in ion currents, AP, Ca(2+) handling, and intercellular coupling to the development of arrhythmias in TNF-α mice, we further created several multicellular model tissues with combinations of wild-type (WT)/reduced gap junction conductance, WT/prolonged AP, and WT/decreased Na(+) current (I(Na)) amplitude. All model tissues were examined for susceptibility to Ca(2+) alternans, AP propagation block, and reentry. Our modeling results demonstrated that, similar to experimental data in TNF-α mice, Ca(2+) alternans in TNF-α tissues developed at longer basic cycle lengths. The greater susceptibility to Ca(2+) alternans was attributed to the prolonged AP, resulting in larger inactivation of I(Na), and to the decreased SR Ca(2+) uptake and corresponding smaller SR Ca(2+) load. Simulations demonstrated that AP prolongation induces an increased susceptibility to AP propagation block. Programmed stimulation of the model tissues with a premature impulse showed that reduced gap junction conduction increased the vulnerable window for initiation reentry, supporting the idea that reduced intercellular coupling is the major factor for reentrant arrhythmias in TNF-α mice.  相似文献   

7.
A number of mutations have been linked to diseases for which the underlying mechanisms are poorly understood. An example is Timothy Syndrome (TS), a multisystem disorder that includes severe cardiac arrhythmias. Here we employ theoretical simulations to examine the effects of a TS mutation in the L-type Ca(2+) channel on cardiac dynamics over multiple scales, from a gene mutation to protein, cell, tissue, and finally the ECG, to connect a defective Ca(2+) channel to arrhythmia susceptibility. Our results indicate that 1) the TS mutation disrupts the rate-dependent dynamics in a single cardiac cell and promotes the development of alternans; 2) in coupled tissue, concordant alternans is observed at slower heart rates in mutant tissue than in normal tissue and, once initiated, rapidly degenerates into discordant alternans and conduction block; and 3) the ECG computed from mutant-simulated tissue exhibits prolonged QT intervals at physiological rates and with small increases in pacing rate, T-wave alternans, and alternating T-wave inversion. At the cellular level, enhanced Ca(2+) influx due to the TS mutation causes electrical instabilities. In tissue, the interplay between faulty Ca(2+) influx and steep action potential duration restitution causes arrhythmogenic discordant alternans. The prolongation of action potentials causes spatial dispersion of the Na(+) channel excitability, leading to inhomogeneous conduction velocity and large action potential spatial gradients. Our model simulations are consistent with the ECG patterns from TS patients, which suggest that the TS mutation is sufficient to cause the clinical phenotype and allows for the revelation of the complex interactions of currents underlying it.  相似文献   

8.
Pulmonary hypertension provokes right heart failure and arrhythmias. Better understanding of the mechanisms underlying these arrhythmias is needed to facilitate new therapeutic approaches for the hypertensive, failing right ventricle (RV). The aim of our study was to identify the mechanisms generating arrhythmias in a model of RV failure induced by pulmonary hypertension. Rats were injected with monocrotaline to induce either RV hypertrophy or failure or with saline (control). ECGs were measured in conscious, unrestrained animals by telemetry. In isolated hearts, electrical activity was measured by optical mapping and myofiber orientation by diffusion tensor-MRI. Sarcoplasmic reticular Ca(2+) handling was studied in single myocytes. Compared with control animals, the T-wave of the ECG was prolonged and in three of seven heart failure animals, prominent T-wave alternans occurred. Discordant action potential (AP) alternans occurred in isolated failing hearts and Ca(2+) transient alternans in failing myocytes. In failing hearts, AP duration and dispersion were increased; conduction velocity and AP restitution were steeper. The latter was intrinsic to failing single myocytes. Failing hearts had greater fiber angle disarray; this correlated with AP duration. Failing myocytes had reduced sarco(endo)plasmic reticular Ca(2+)-ATPase activity, increased sarcoplasmic reticular Ca(2+)-release fraction, and increased Ca(2+) spark leak. In hypertrophied hearts and myocytes, dysfunctional adaptation had begun, but alternans did not develop. We conclude that increased electrical and structural heterogeneity and dysfunctional sarcoplasmic reticular Ca(2+) handling increased the probability of alternans, a proarrhythmic predictor of sudden cardiac death. These mechanisms are potential therapeutic targets for the correction of arrhythmias in hypertensive, failing RVs.  相似文献   

9.
Defects in excitation-contraction coupling have been reported in failing hearts, but little is known about the relationship between these defects and the development of heart failure (HF). We compared the early changes in intracellular Ca(2+) cycling to those that underlie overt pump dysfunction and arrhythmogenesis found later in HF. Laser-scanning confocal microscopy was used to measure Ca(2+) transients in myocytes of intact hearts in Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs) at different ages. Early compensatory mechanisms include a positive inotropic effect in SHRs at 7.5-9 mo compared with 6 mo. Ca(2+) transient duration increased at 9 mo in SHRs, indicating changes in Ca(2+) reuptake during decompensation. Cell-to-cell variability in Ca(2+) transient duration increased at 7.5 mo, decreased at 9 mo, and increased again at 22 mo (overt HF), indicating extensive intercellular variability in Ca(2+) transient kinetics during disease progression. Vulnerability to intercellular concordant Ca(2+) alternans increased at 9-22 mo in SHRs and was mirrored by a slowing in Ca(2+) transient restitution, suggesting that repolarization alternans and the resulting repolarization gradients might promote reentrant arrhythmias early in disease development. Intercellular discordant and subcellular Ca(2+) alternans increased as early as 7.5 mo in SHRs and may also promote arrhythmias during the compensated phase. The incidence of spontaneous and triggered Ca(2+) waves was increased in SHRs at all ages, suggesting a higher likelihood of triggered arrhythmias in SHRs compared with WKY rats well before HF develops. Thus serious and progressive defects in Ca(2+) cycling develop in SHRs long before symptoms of HF occur. Defective Ca(2+) cycling develops early and affects a small number of myocytes, and this number grows with age and causes the transition from asymptomatic to overt HF. These defects may also underlie the progressive susceptibility to Ca(2+) alternans and Ca(2+) wave activity, thus increasing the propensity for arrhythmogenesis in HF.  相似文献   

10.
T-wave alternans, characterized by a beat-to-beat change in T-wave morphology, amplitude, and/or polarity on the ECG, often heralds the development of lethal ventricular arrhythmias in patients with left ventricular hypertrophy (LVH). The aim of our study was to examine the ionic basis for a beat-to-beat change in ventricular repolarization in the setting of LVH. Transmembrane action potentials (APs) from epicardium and endocardium were recorded simultaneously, together with transmural ECG and contraction force, in arterially perfused rabbit left ventricular wedge preparation. APs and Ca(2+)-activated chloride current (I(Cl,Ca)) were recorded from left ventricular myocytes isolated from normal rabbits and those with renovascular LVH using the standard microelectrode and whole cell patch-clamping techniques, respectively. In the LVH rabbits, a significant beat-to-beat change in endocardial AP duration (APD) created beat-to-beat alteration in transmural voltage gradient that manifested as T-wave alternans on the ECG. Interestingly, contraction force alternated in an opposite phase ("out of phase") with APD. In the single myocytes of LVH rabbits, a significant beat-to-beat change in APD was also observed in both left ventricular endocardial and epicardial myocytes at various pacing rates. APD alternans was suppressed by adding 1 microM ryanodine, 100 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), and 100 microM 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS). The density of the Ca(2+)-activated chloride currents (I(Cl,Ca)) in left ventricular myocytes was significantly greater in the LVH rabbits than in the normal group. Our data indicate that abnormal intracellular Ca(2+) fluctuation may exert a strong feedback on the membrane I(Cl,Ca), leading to a beat-to-beat change in the net repolarizing current that manifests as T-wave alternans on the ECG.  相似文献   

11.
Fluorescent ryanodine revealed the distribution of ryanodine receptors in the submembrane cytoplasm (less than a few micrometers) of cultured bullfrog sympathetic ganglion cells. Rises in cytosolic Ca(2+) ([Ca(2+)](i)) elicited by single or repetitive action potentials (APs) propagated at a high speed (150 microm/s) in constant amplitude and rate of rise in the cytoplasm bearing ryanodine receptors, and then in the slower, waning manner in the deeper region. Ryanodine (10 microM), a ryanodine receptor blocker (and/or a half opener), or thapsigargin (1-2 microM), a Ca(2+)-pump blocker, or omega-conotoxin GVIA (omega-CgTx, 1 microM), a N-type Ca(2+) channel blocker, blocked the fast propagation, but did not affect the slower spread. Ca(2+) entry thus triggered the regenerative activation of Ca(2+)-induced Ca(2+) release (CICR) in the submembrane region, followed by buffered Ca(2+) diffusion in the deeper cytoplasm. Computer simulation assuming Ca(2+) release in the submembrane region reproduced the Ca(2+) dynamics. Ryanodine or thapsigargin decreased the rate of spike repolarization of an AP to 80%, but not in the presence of iberiotoxin (IbTx, 100 nM), a BK-type Ca(2+)-activated K(+) channel blocker, or omega-CgTx, both of which decreased the rate to 50%. The spike repolarization rate and the amplitude of a single AP-induced rise in [Ca(2+)](i) gradually decreased to a plateau during repetition of APs at 50 Hz, but reduced less in the presence of ryanodine or thapsigargin. The amplitude of each of the [Ca(2+)](i) rise correlated well with the reduction in the IbTx-sensitive component of spike repolarization. The apamin-sensitive SK-type Ca(2+)-activated K(+) current, underlying the afterhyperpolarization of APs, increased during repetitive APs, decayed faster than the accompanying rise in [Ca(2+)](i), and was suppressed by CICR blockers. Thus, ryanodine receptors form a functional triad with N-type Ca(2+) channels and BK channels, and a loose coupling with SK channels in bullfrog sympathetic neurons, plastically modulating AP.  相似文献   

12.
《Biophysical journal》2022,121(3):383-395
A wide range of atrial arrythmias are caused by molecular defects in proteins that regulate calcium (Ca) cycling. In many cases, these defects promote the propagation of subcellular Ca waves in the cell, which can perturb the voltage time course and induce dangerous perturbations of the action potential (AP). However, subcellular Ca waves occur randomly in cells and, therefore, electrical coupling between cells substantially decreases their effect on the AP. In this study, we present evidence that Ca waves in atrial tissue can synchronize in-phase owing to an order-disorder phase transition. In particular, we show that, below a critical pacing rate, Ca waves are desynchronized and therefore do not induce substantial AP fluctuations in tissue. However, above this critical pacing rate, Ca waves gradually synchronize over millions of cells, which leads to a dramatic amplification of AP fluctuations. We exploit an underlying Ising symmetry of paced cardiac tissue to show that this transition exhibits universal properties common to a wide range of physical systems in nature. Finally, we show that in the heart, phase synchronization induces spatially out-of-phase AP duration alternans which drives wave break and reentry. These results suggest that cardiac tissue exhibits a phase transition that is required for subcellular Ca cycling defects to induce a life-threatening arrhythmia.  相似文献   

13.
Voltage-gated L-type calcium channels (LTCCs) are expressed in adrenal chromaffin cells. Besides shaping the action potential (AP), LTCCs are involved in the excitation-secretion coupling controlling catecholamine release and in Ca (2+) -dependent vesicle retrieval. Of the two LTCCs expressed in chromaffin cells (CaV1.2 and CaV1.3), CaV1.3 possesses the prerequisites for pacemaking spontaneously firing cells: low-threshold, steep voltage-dependence of activation and slow inactivation. By using CaV1 .3 (-/-) KO mice and the AP-clamp it has been possible to resolve the time course of CaV1.3 pacemaker currents, which is similar to that regulating substantia nigra dopaminergic neurons. In mouse chromaffin cells CaV1.3 is coupled to fast-inactivating BK channels within membrane nanodomains and controls AP repolarization. The ability to carry subthreshold Ca (2+) currents and activate BK channels confers to CaV1.3 the unique feature of driving Ca (2+) loading during long interspike intervals and, possibly, to control the Ca (2+) -dependent exocytosis and endocytosis processes that regulate catecholamine secretion and vesicle recycling.  相似文献   

14.
Repolarization alternans is a harbinger of sudden cardiac death, particularly when it becomes spatially discordant. Alternans, a beat-to-beat alternation in the action potential duration (APD) and intracellular Ca (Cai), can arise from either tissue heterogeneities or dynamic factors. Distinguishing between these mechanisms in normal cardiac tissue is difficult because of inherent complex three-dimensional tissue heterogeneities. To evaluate repolarization alternans in a simpler two-dimensional cardiac substrate, we optically recorded voltage and/or Cai in monolayers of cultured neonatal rat ventricular myocytes during rapid pacing, before and after exposure to BAY K 8644 to enhance dynamic factors promoting alternans. Under control conditions (n = 37), rapid pacing caused detectable APD alternans in 81% of monolayers, and Cai transient alternans in all monolayers, becoming spatially discordant in 62%. After BAY K 8644 (n = 28), conduction velocity restitution became more prominent, and APD and Cai alternans developed and became spatially discordant in all monolayers, with an increased number of nodal lines separating out-of-phase alternating regions. Nodal lines moved closer to the pacing site with faster pacing rates and changed orientation when the pacing site was moved, as predicted for the dynamically generated, but not heterogeneity-based, alternans. Spatial APD gradients during spatially discordant alternans were sufficiently steep to induce conduction block and reentry. These findings indicate that spatially discordant alternans severe enough to initiate reentry can be readily induced by pacing in two-dimensional cardiac tissue and behaves according to predictions for a predominantly dynamically generated mechanism.  相似文献   

15.
Repolarization alternans has been considered a strong marker of electrical instability. The objective of this study was to investigate the hypothesis that ischemia-induced contrasting effects on the kinetics of membrane voltage and intracellular calcium transient (Ca(i)T) can explain the vulnerability of the ischemic heart to repolarization alternans. Ischemia-induced changes in action potential (AP) and Ca(i)T resulting in alternans were investigated in perfused Langendorff guinea pig hearts subjected to 10-15 min of global no-flow ischemia followed by 10-15 min of reperfusion. The heart was stained with 100 microl of rhod-2 AM and 25 microl of RH-237, and AP and Ca(i)T were simultaneously recorded with an optical mapping system of two 16 x 16 photodiode arrays. Ischemia was associated with shortening of AP duration (D) but delayed upstroke, broadening of peak, and slowed decay of Ca(i)T resulting in a significant increase of Ca(i)T-D. The changes in APD were spatially heterogeneous in contrast to a more spatially homogeneous lengthening of Ca(i)T-D. Ca(i)T alternans could be consistently induced with the introduction of a shorter cycle when the upstroke of the AP occurred before complete relaxation of the previous Ca(i)T and generated a reduced Ca(i)T. However, alternans of Ca(i)T was not necessarily associated with alternans of APD, and this was correlated with the degree of spatially heterogeneous shortening of APD. Sites with less shortening of APD developed alternans of both Ca(i)T and APD, whereas sites with greater shortening of APD could develop a similar degree of Ca(i)T alternans but slight or no APD alternans. This resulted in significant spatial dispersion of APD. The study shows that the contrasting effects of ischemia on the duration of AP and Ca(i)T and, in particular, on their spatial distribution explain the vulnerability of ischemic heart to alternans and the increased dispersion of repolarization during alternans.  相似文献   

16.
We used pulsed laser imaging to measure the development and dissipation of Ca(2+) gradients evoked by the activation of voltage-sensitive Ca(2+) channels in adrenal chromaffin cells. Ca(2+) gradients appeared rapidly (<5 ms) upon membrane depolarization and dissipated over several hundred milliseconds after membrane repolarization. Dissipation occurred with an initial fast phase, as the steep gradient near the membrane collapsed, and a slower phase as the remaining shallow gradient dispersed. Inhibition of active Ca(2+) uptake by the endoplasmic reticulum (thapsigargin) and mitochondria (carbonylcyanide p-trifluoro-methoxyphenylhydrazone/oligomycin) had no effect on the size of Ca(2+) changes or the rate of gradient dissipation, suggesting that passive endogenous Ca(2+) buffers are responsible for the slow Ca(2+) redistribution. We used a radial diffusion model incorporating Ca(2+) diffusion and binding to intracellular Ca(2+) buffers to simulate Ca(2+) gradients. We included a 3D optical sectioning model, simulating the effects of out-of-focus light, to allow comparison with the measured gradients. Introduction of a high-capacity immobile Ca(2+) buffer, with a buffer capacity on the order of 1000 and appropriate affinity and kinetics, approximated the size of the Ca(2+) increases and rate of dissipation of the measured gradients. Finally, simulations without exogenous buffer suggest that the Ca(2+) signal due to Ca(2+) channel activation is restricted by the endogenous buffer to a space less than 1 microm from the cell membrane.  相似文献   

17.
Previous studies indicate that action potential duration (APD) alternans is initiated in the endocardial (END) and midmyocardial (MID) regions rather than the epicardium (EPI) in the canine left ventricle (LV). This study examines regional differences in the rate dependence of Ca(2+) transient characteristics under conditions that give rise to APD and associated T wave alternans. The role of the sarcoplasmic reticulum (SR) was further evaluated by studying Ca(2+) transient characteristics in myocytes isolated from neonates, where an organized SR is poorly developed. All studies were performed in cells and tissues isolated from the canine LV. Isolated canine ENDO, MID, and EPI LV myocytes were either field stimulated or voltage clamped, and Ca(2+) transients were measured by confocal microscopy. In LV wedge preparations, increasing the basic cycle length (BCL) from 800 to 250 ms caused alternans to appear mainly in the ENDO and MID region; alternans were not observed in EPI under these conditions. Ca(2+) transient alternans developed in response to rapid pacing, appearing in EPI cells at shorter BCL compared with MID and ENDO cells (BCL=428 +/- 17 vs. 517 +/- 29 and 514 +/- 21, respectively, P < 0.05). Further increases in pacing rate resulted in the appearance of subcellular alternans of Ca(2+) transient amplitude, which also appeared in EPI at shorter BCL than in ENDO and MID cells. Ca(2+) transient alternans was not observed in neonate myocytes. We conclude that 1) there are distinct regional differences in the vulnerability to rate-dependent Ca(2+) alternans in dog LV that may be related to regional differences in SR function and Ca(2+) cycling; 2) the development of subcellular Ca(2+) alternans suggests the presence of intracellular heterogeneities in Ca(2+) cycling; and 3) the failure of neonatal cells to develop Ca(2+) alternans provides further support that SR Ca(2+) cycling is a major component in the development of these phenomena.  相似文献   

18.
The properties of several components of outward K(+) currents, including the pharmacological and kinetics profiles as well as the respective molecular correlates, have been identified in mouse cardiac myocytes. Surprisingly little is known with regard to the Ca(2+)-activated ionic currents. We studied the Ca(2+)-activated transient outward currents in mouse ventricular myocytes. We have identified a 4-aminopyridine (4-AP)- and tetraethyl ammonium-resistant transient outward current that is Ca(2+) dependent. The current is carried by Cl(-) and is critically dependent on Ca(2+) influx via voltage-gated Ca(2+) channels and the sarcoplasmic reticulum Ca(2+) store. The current can be blocked by the anion transport blockers niflumic acid and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. Single channel recordings reveal small conductance channels (approximately 1 pS in 140 mM Cl(-)) that can be blocked by anion transport blockers. Ensemble-averaged current faithfully mirrors the transient kinetics observed at the whole level. Niflumic acid (in the presence of 4-AP) leads to prolongation of the early repolarization. Thus this current may contribute to early repolarization of action potentials in mouse ventricular myocytes.  相似文献   

19.
Intramural gradients of intracellular Ca(2+) (Ca(i)(2+)) Ca(i)(2+) handling, Ca(i)(2+) oscillations, and Ca(i)(2+) transient (CaT) alternans may be important in long-duration ventricular fibrillation (LDVF). However, previous studies of Ca(i)(2+) handling have been limited to recordings from the heart surface during short-duration ventricular fibrillation. To examine whether abnormalities of intramural Ca(i)(2+) handling contribute to LDVF, we measured membrane voltage (V(m)) and Ca(i)(2+) during pacing and LDVF in six perfused canine hearts using five eight-fiber optrodes. Measurements were grouped into epicardial, midwall, and endocardial layers. We found that during pacing at 350-ms cycle length, CaT duration was slightly longer (by ?10%) in endocardial layers than in epicardial layers, whereas action potential duration (APD) exhibited no difference. Rapid pacing at 150-ms cycle length caused alternans in both APD (APD-ALT) and CaT amplitude (CaA-ALT) without significant transmural differences. For 93% of optrode recordings, CaA-ALT was transmurally concordant, whereas APD-ALT was either concordant (36%) or discordant (54%), suggesting that APD-ALT was not caused by CaA-ALT. During LDVF, V(m) and Ca(i)(2+) progressively desynchronized when not every action potential was followed by a CaT. Such desynchronization developed faster in the epicardium than in the other layers. In addition, CaT duration strongly increased (by ~240% at 5 min of LDVF), whereas APD shortened (by ~17%). CaT rises always followed V(m) upstrokes during pacing and LDVF. In conclusion, the fact that V(m) upstrokes always preceded CaTs indicates that spontaneous Ca(i)(2+) oscillations in the working myocardium were not likely the reason for LDVF maintenance. Strong V(m)-Ca(i)(2+) desynchronization and the occurrence of long CaTs during LDVF indicate severely impaired Ca(i)(2+) handling and may potentially contribute to LDVF maintenance.  相似文献   

20.
The roles of sustained components of I(Na) and I(Kv43) in shaping the action potentials (AP) of myocytes isolated from the canine left ventricle (LV) have not been studied in detail. Here we investigate the hypothesis that these two currents can contribute substantially to heterogeneity of early repolarization and arrhythmic risk. Quantitative data from voltage-clamp and expression profiling experiments were used to complete meaningful modifications to an existing "local control" model of canine midmyocardial myocyte excitation-contraction coupling for epicardial and endocardial cells. We include 1) heterogeneous I(Kv43), I(Ks), and I(SERCA) density; 2) modulation of I(Kv43) by Kv channel interacting protein type 2 (KChIP2) channel subunits; 3) a possible Ca(2+)-dependent open-state inactivation of I(Kv43); and 4) a sustained component of the inward Na(+) current, I(NaL). The resulting simulations illustrate ways in which KChIP2- and Ca(2+)-dependent control of I(Kv43) can result in a sustained outward current that can neutralize I(NaL) in a rate- and myocyte subtype-dependent manner. Both these currents appear to play significant roles in modulating AP duration and rate dependence in midmyocardial myocytes. Furthermore, an increased ratio of I(Kv43) to I(NaL) is capable of protecting epicardial myocytes from the early afterdepolarizations resulting from the SCN5A-I1768V mutation-induced increase in I(NaL). Experimentally observed transmural differences in Ca(2+) handling, including greater sarcoplasmic reticulum Ca(2+) content and faster Ca(2+) transient decay rates on the epicardium, were recapitulated in our simulations. By design, these models allow upward integration into organ models or may be used as a basis for further investigations into cellular heterogeneities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号