首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The established protocol for DNase I footprinting has been modified to allow multiple parallel reactions to be rapidly performed in 96-well microtitre plates. By scrutinizing every aspect of the traditional method and making appropriate modifications it has been possible to considerably reduce the time, risk of sample loss and complexity of footprinting, whilst dramatically increasing the yield of data (30-fold). A semi-automated analysis system has also been developed to present footprinting data as an estimate of the binding affinity of each tested compound to any base pair in the assessed DNA sequence, giving an intuitive ‘one compound–one line’ scheme. Here, we demonstrate the screening capabilities of the 96-well assay and the subsequent data analysis using a series of six pyrrolobenzodiazepine-polypyrrole compounds and human Topoisomerase II alpha promoter DNA. The dramatic increase in throughput, quantified data and decreased handling time allow, for the first time, DNase I footprinting to be used as a screening tool to assess DNA-binding agents.  相似文献   

2.
Fragment analysis was developed to determine the sizes of DNA fragments relative to size standards of known lengths using a capillary electrophoresis genetic analyzer. This approach has since been adapted for use in DNA footprinting. However, DNA footprinting requires accurate determination of both fragment length and intensity, imposing specific demands on the experimental design. Here we delineate essential considerations involved in optimizing the fragment analysis workflow for use in DNase I footprinting to ensure that changes in DNase I cleavage patterns may be reliably identified.  相似文献   

3.
Deoxyribonuclease I digestion of the deoxyoligodecamer 5'd(ATCGTACGAT)2(3') has been examined in detail to study the kinetic and structural properties of this enzyme substrate system in solution. In addition, these studies have defined, in general, those DNase I conditions to be used in future drug-DNA footprinting experiments. Special attention has been taken of those properties of DNase I that are critical for quantitation of ligand binding to small DNA fragments, and that aid in designing oligomers to be used in footprinting experiments. Enzyme activity was observed at all phosphodiester bonds in the decamer studied with varying affinity, except for the first four bonds at the 5' end of the oligomer. The DNA substrate concentration is always in excess, in order to achieve conditions of no more than one DNase I cleavage per DNA molecule. Reactions were controlled so that 65% or more of the initial amount of decamer substrate remained after DNase I digestion. It was observed that the rate of enzyme reactivity decreases with digestion time and is sensitive to the experimental conditions.  相似文献   

4.
DNase I and MPE.Fe (II) footprinting both employ partial cleavage of ligand-protected DNA restriction fragments and Maxam-Gilbert sequencing gel methods of analysis. One method utilizes the enzyme, DNase I, as the DNA cleaving agent while the other employs the synthetic molecule, methidium-propyl-EDTA (MPE). For actinomycin D, chromomycin A3 and distamycin A, DNase I footprinting reports larger binding site sizes than MPE.Fe (II). DNase I footprinting appears more sensitive for weakly bound sites. MPE.Fe (II) footprinting appears more accurate in determining the actual size and location of the binding sites for small molecules on DNA, especially in cases where several small molecules are closely spaced on the DNA. MPE.Fe (II) and DNase I report the same sequence and binding site size for lac repressor protein on operator DNA.  相似文献   

5.
6.
7.
In footprinting experiments, an increase in DNA cleavage with addition of ligand to a system may be due to a ligand-induced structural change. Ligand binding also enhances cleavage by displacing the cleavage agent from ligand-binding sites, thus increasing its concentration elsewhere. The theory and characteristics of this mass-action enhancement are given, and it is shown how it may be recognized. Results of DNase I footprinting of small oligomers, with actinomycin D as ligand, are analyzed to reveal which enhancements are due to mass action, and which can reasonably be ascribed to structural changes. Patterns in the footprinting plots from our experiments on actinomycin D binding to a 139-base-pair DNA fragment (with DNase I as a probe) are studied in the same way. The likely origins of these patterns are discussed, as are enhancements occurring with other probes commonly used in footprinting experiments.  相似文献   

8.
Jain SS  Tullius TD 《Nature protocols》2008,3(6):1092-1100
Hydroxyl radical footprinting has been widely used for studying the structure of DNA and DNA-protein complexes. The high reactivity and lack of base specificity of the hydroxyl radical makes it an excellent probe for high-resolution footprinting of DNA-protein complexes; this technique can provide structural detail that is not achievable using DNase I footprinting. Hydroxyl radical footprinting experiments can be carried out using readily available and inexpensive reagents and lab equipment. This method involves using the hydroxyl radical to cleave a nucleic acid molecule that is bound to a protein, followed by separating the cleavage products on a denaturing electrophoresis gel to identify the protein-binding sites on the nucleic acid molecule. We describe a protocol for hydroxyl radical footprinting of DNA-protein complexes, along with a troubleshooting guide, that allows researchers to obtain efficient cleavage of DNA in the presence and absence of proteins. This protocol can be completed in 2 d.  相似文献   

9.
Bidirectional transcription footprinting of DNA binding ligands   总被引:1,自引:0,他引:1  
R J White  D R Phillips 《Biochemistry》1989,28(15):6259-6269
  相似文献   

10.
11.
12.
The sequence selectivity associated with binding to DNA of three alkaloids belonging to the benzophenanthridine family has been analysed by DNase I footprinting, and the results were compared with those obtained from an analysis of the behaviour of the standard intercalator, ethidium bromide. Like the ethidium, the benzophenanthridine compounds appear to bind best to regions of mixed nucleotide sequence, especially those containing alternating purines and pyrimidines, although there are some notable differences in behaviour. There is also a marked lack of binding to sequences such as (AT)n, where n greater than or equal to 3. The binding to DNA of the benzophenanthridines is specifically related to the hydrogen ion concentration of the medium, in that the DNase I footprints are considerably enhanced when the reaction is performed at a pH below 7.0. We discuss these results in terms of a greater preponderance of the intercalating species being present at lower pH.  相似文献   

13.
14.
Footprinting is a simple method for assessing the sequence selectivity of DNA-binding ligands. The method is based on the ability of the ligand to protect DNA from cleavage at its binding site. This review describes the use of DNase I and hydroxyl radicals, the most commonly used footprinting probes, in footprinting experiments. The success of a footprinting experiment depends on using an appropriate DNA substrate and we describe how these can best be chosen or designed. Although footprinting was originally developed for assessing a ligand's sequence selectivity, it can also be employed to estimate the binding strength (quantitative footprinting) and to assess the association and dissociation rate constants for slow binding reactions.  相似文献   

15.
Replication enhancers are cis-acting genetic elements that stimulate the activity of origins of DNA replication. The enhancer found in plasmid pT181 of Staphylococcus aureus, called cmp, functions at a distance of 1 kb from the origin of DNA replication to stimulate the interaction between the replication initiation protein and the origin. DNA encoding cmp-binding activity was isolated by screening an expression library of S. aureus DNA in Escherichia coli, and a novel gene, designated cbf1, was identified. The cbf1 locus codes for a polypeptide of 313 amino acid residues (cmp-binding factor 1 [CBF1]; Mr = 35,778). In its COOH-terminal region, the protein sequence contains the helix-turn-helix motif common to many DNA binding proteins that usually bend DNA. The specificity of CBF1 binding for cmp was demonstrated by affinity chromatography using cmp DNA and by competition binding studies. DNase I footprinting analysis of the CBF1-cmp complexes revealed DNase I-hypersensitive sites in phase with the helical periodicity of DNA, implying that CBF1 increases distortion of the intrinsically bent cmp DNA.  相似文献   

16.
Quantitative footprinting analysis. Binding to a single site   总被引:3,自引:0,他引:3  
The theory for measuring ligand binding constants from footprinting autoradiographic data associated with a single binding site is derived. If the ligand and DNA cleavage agent compete for a common site, the spot intensities are not proportional to the amount of DNA not blocked by ligand. The analysis of a single site is experimentally illustrated by using results for the anticancer drug actinomycin D interacting with the duplex d(TAGCGCTA)2 as probed with the hydrolytic enzyme DNase I.  相似文献   

17.
We have studied the interaction between recombination signal sequences (RSSs) and protein products of the truncated forms of recombination-activating genes (RAG) by gel mobility shift, DNase I footprinting, and methylation interference assays. Methylation interference with dimethyl sulfate demonstrated that binding was blocked by methylation in the nonamer at the second-position G residue in the bottom strand and at the sixth- and seventh-position A residues in the top strand. DNase I footprinting experiments demonstrated that RAG1 alone, or even a RAG1 homeodomain peptide, gave footprint patterns very similar to those obtained with the RAG1-RAG2 complex. In the heptamer, partial methylation interference was observed at the sixth-position A residue in the bottom strand. In DNase I footprinting, the heptamer region was weakly protected in the bottom strand by RAG1. The effects of RSS mutations on RAG binding were evaluated by DNA footprinting. Comparison of the RAG-RSS footprint data with the published Hin model confirmed the notion that sequence-specific RSS-RAG interaction takes place primarily between the Hin domain of the RAG1 protein and adjacent major and minor grooves of the nonamer DNA.  相似文献   

18.
The use of capillary electrophoresis with fluorescently labeled nucleic acids revolutionized DNA sequencing, effectively fueling the genomic revolution. We present an application of this technology for the high-throughput structural analysis of nucleic acids by chemical and enzymatic mapping ('footprinting'). We achieve the throughput and data quality necessary for genomic-scale structural analysis by combining fluorophore labeling of nucleic acids with novel quantitation algorithms. We implemented these algorithms in the CAFA (capillary automated footprinting analysis) open-source software that is downloadable gratis from https://simtk.org/home/cafa. The accuracy, throughput and reproducibility of CAFA analysis are demonstrated using hydroxyl radical footprinting of RNA. The versatility of CAFA is illustrated by dimethyl sulfate mapping of RNA secondary structure and DNase I mapping of a protein binding to a specific sequence of DNA. Our experimental and computational approach facilitates the acquisition of high-throughput chemical probing data for solution structural analysis of nucleic acids.  相似文献   

19.
Deoxyribonuclease I (DNase I) activity in serum has been shown to be a novel diagnostic marker for the early detection of acute myocardial infarction (AMI). However, the conventional method to measure DNase I activity is time-consuming. In the current study, to develop a rapid assay method for DNase I activity for clinical purposes, a microchip electrophoresis device was used to measure DNase I activity. Because DNase I is an endonuclease that degrades double-stranded DNA endo-nucleolytically to produce oligonucleotides, degradation of the DNA standard caused by DNase I action was detected using microchip electrophoresis. We detected DNase I activity within 10 min. This is the first study to apply microchip electrophoresis for the detection of DNase I activity; furthermore, it seems plausible that reduction of analysis time for DNase I activity could make this novel assay method using microchip electrophoresis applicable in clinical use.  相似文献   

20.
DNase I footprinting has been used to examine the sequence selective binding of ditrisarubicin B, novel anthracycline antibiotic, to DNA. At 37°C no footprinting pattern is observed, the drug protects all sites from enzymic cleavage with equal efficiency. At 4°C a footprinting pattern is induced with low drug concentrations which is different from that produced by daunomycin. The best binding sites contain the dinucleotide step GpT (ApC) and are located in regions of alternating purines and pyrimidines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号