首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growing evidence shows that the soluble N-terminal form (sAPPalpha) of the amyloid precursor protein (APP) represents an epidermal growth factor fostering keratinocyte proliferation, migration and adhesion. APP is a member of a protein family including the two mammalian amyloid precursor-like proteins APLP1 and APLP2. In the mammalian epidermis, only APP and APLP2 are expressed. APP and APLP2-deficient mice die shortly after birth but do not display a specific epidermal phenotype. In this report, we investigated the epidermis of APP and/or APLP2 knockout mice. Basal keratinocytes showed reduced proliferation in vivo by about 40%. Likewise, isolated keratinocytes exhibited reduced proliferation rates in vitro, which could be completely rescued by either exogenously added recombinant sAPPalpha, or by co-culture with dermal fibroblasts derived from APP knockout mice. Moreover, APP-knockout keratinocytes revealed reduced migration velocity resulting from severely compromised cell substrate adhesion. Keratinocytes from double knockout mice died within the first week of culture, indicating essential functions of APP-family members for survival in vitro. Our data indicate that sAPPalpha has to be considered as an essential epidermal growth factor which, however, in vivo can be functionally compensated to a certain extent by other growth factors, e.g., factors released from dermal fibroblasts.  相似文献   

2.
Presenilin is the enzymatic component of gamma-secretase, a multisubunit intramembrane protease that processes several transmembrane receptors, such as the amyloid precursor protein (APP). Mutations in human Presenilins lead to altered APP cleavage and early-onset Alzheimer's disease. Presenilins also play an essential role in Notch receptor cleavage and signaling. The Notch pathway is a highly conserved signaling pathway that functions during the development of multicellular organisms, including vertebrates, Drosophila, and C. elegans. Recent studies have shown that Notch signaling is sensitive to perturbations in subcellular trafficking, although the specific mechanisms are largely unknown. To identify genes that regulate Notch pathway function, we have performed two genetic screens in Drosophila for modifiers of Presenilin-dependent Notch phenotypes. We describe here the cloning and identification of 19 modifiers, including nicastrin and several genes with previously undescribed involvement in Notch biology. The predicted functions of these newly identified genes are consistent with extracellular matrix and vesicular trafficking mechanisms in Presenilin and Notch pathway regulation and suggest a novel role for gamma-tubulin in the pathway.  相似文献   

3.
The Alzheimer's disease amyloid protein precursor (APP) gene is part of a multi-gene super-family from which sixteen homologous amyloid precursor-like proteins (APLP) and APP species homologues have been isolated and characterised. Comparison of exon structure (including the uncharacterised APL-1 gene), construction of phylogenetic trees, and analysis of the protein sequence alignment of known homologues of the APP super-family were performed to reconstruct the evolution of the family and to assess the functional significance of conserved protein sequences between homologues. This analysis supports an adhesion function for all members of the APP super family, with specificity determined by those sequences which are not conserved between APLP lineages, and provides evidence for an increasingly complex APP superfamily during evolution. The analysis also suggests that Drosophila APPL and Caenorhabditis elegans APL-1 may be a fourth APLP lineage indicating that these proteins, while not functional homologues of human APP, are similarly likely to regulate cell adhesion. Furthermore, the betaA4 sequence is highly conserved only in APP orthologues, strongly suggesting this sequence is of significant functional importance in this lineage.  相似文献   

4.
A prominent feature of glial cells is their ability to migrate along axons to finally wrap and insulate them. In the embryonic Drosophila PNS, most glial cells are born in the CNS and have to migrate to reach their final destinations. To understand how migration of the peripheral glia is regulated, we have conducted a genetic screen looking for mutants that disrupt the normal glial pattern. Here we present an analysis of two of these mutants: Notch and numb. Complete loss of Notch function leads to an increase in the number of glial cells. Embryos hemizygous for the weak Notch(B-8X) allele display an irregular migration phenotype and mutant glial cells show an increased formation of filopodia-like structures. A similar phenotype occurs in embryos carrying the Notch(ts1) allele when shifted to the restrictive temperature during the glial cell migration phase, suggesting that Notch must be activated during glial migration. This is corroborated by the fact that cell-specific reduction of Notch activity in glial cells by directed numb expression also results in similar migration phenotypes. Since the glial migration phenotypes of Notch and numb mutants resemble each other, our data support a model where the precise temporal and quantitative regulation of Numb and Notch activity is not only required during fate decisions but also later during glial differentiation and migration.  相似文献   

5.
The Alzheimer's disease beta-amyloid precursor protein (APP) is a member of a larger gene family that includes the amyloid precursor-like proteins, termed APLP1 and APLP2. We previously documented that APLP2-/-APLP1-/- and APLP2-/-APP-/- mice die postnatally, while APLP1-/-APP-/- mice and single mutants were viable. We now report that mice lacking all three APP/APLP family members survive through embryonic development, and die shortly after birth. In contrast to double-mutant animals with perinatal lethality, 81% of triple mutants showed cranial abnormalities. In 68% of triple mutants, we observed cortical dysplasias characterized by focal ectopic neuroblasts that had migrated through the basal lamina and pial membrane, a phenotype that resembles human type II lissencephaly. Moreover, at E18.5 triple mutants showed a partial loss of cortical Cajal Retzius (CR) cells, suggesting that APP/APLPs play a crucial role in the survival of CR cells and neuronal adhesion. Collectively, our data reveal an essential role for APP family members in normal brain development and early postnatal survival.  相似文献   

6.
The cell surface receptor Notch is required during development of Drosophila melanogaster for differentiation of numerous tissues. Notch is often required for specification of precursor cells by lateral inhibition and subsequently for differentiation of tissues from these precursor cells. We report here that certain embryonic cells and tissues that develop after lateral inhibition, like the connectives and commissures of the central nervous system, are enriched for a form of Notch not recognized by antibodies made against the intracellular region carboxy-terminal of the CDC10/Ankyrin repeats. Western blotting and immunoprecipitation analyses show that Notch molecules lacking this region are produced during embryogenesis and form protein complexes with the ligand Delta. Experiments with cultured cells indicate that Delta promotes accumulation of a Notch intracellular fragment lacking the carboxyl terminus. Furthermore, Notch lacking the carboxyl terminus functions as a receptor for Delta. These results suggest that Notch activities during development include generation and activity of a truncated receptor we designate NDeltaCterm.  相似文献   

7.
The γ‐secretase complex is involved in cleaving transmembrane proteins such as Notch and one of the genes targeted in Alzheimer's disease known as amyloid precursor protein (APP). Presenilins function within the catalytic core of γ‐secretase, and mutated forms of presenilins were identified as causative factors in familial Alzheimer's disease. Recent studies show that in addition to Notch and APP, numerous signal transduction pathways are modulated by presenilins, including intracellular calcium signaling. Thus, presenilins appear to have diverse roles. To further understand presenilin function, we searched for Presenilin‐interacting genes in Drosophila by performing a genetic modifier screen for enhancers and suppressors of Presenilin‐dependent Notch‐related phenotypes. We identified 177 modifiers, including known members of the Notch pathway and genes involved in intracellular calcium homeostasis. We further demonstrate that 53 of these modifiers genetically interacted with APP. Characterization of these genes may provide valuable insights into Presenilin function in development and disease. genesis 47:246–260, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Amyloid precursor protein (APP) and amyloid precursor-like proteins 1 and 2 (APLP1 and APLP2) are members of a large gene family. Although APP is known to be the source of the beta-amyloid peptides involved in the development of Alzheimer's disease, the normal functions of APP, APLP1 and APLP2 in cells are poorly understood. In this study, we carried out gene silencing analysis by means of RNA interference with synthetic small interfering RNA duplexes targeting the App, Aplp1 and Aplp2 genes in Neuro2a (N2a) cells, a mouse neuroblastoma cell line. The results demonstrated that cell viability and neurite outgrowth of N2a cells undergoing knockdown of Aplp1 were significantly reduced, compared with N2a cells undergoing knockdown of either App or Aplp2.  相似文献   

9.
Drosophila Hibris (Hbs), a member of the Nephrin Immunoglobulin Super Family, has been implicated in myogenesis and eye patterning. Here, we uncover a role of Hbs in Notch (N) signaling and γ-secretase processing. Loss of hbs results in classical N-signaling-associated phenotypes in Drosophila, including eye patterning, wing margin, and sensory organ specification defects. In particular, hbs mutant larvae display altered γ-secretase-dependent Notch proteolytic processing. Hbs also interacts molecularly and genetically with Presenilin (Psn) and other components of the γ-secretase complex. This Hbs function appears conserved, as mammalian Nephrin also promotes N signaling in mammalian cells. Our data suggest that Hbs is required for Psn maturation. Consistent with its role in Psn processing, Hbs genetically interacts with the Drosophila β-amyloid protein precursor-like (Appl) protein, the homolog of mammalian APP, the cleavage of which is associated with Alzheimer's disease. Thus, Hbs/Nephrin appear to share a general requirement in Psn/γ-secretase regulation and associated processes.  相似文献   

10.
11.
The Notch gene encodes an evolutionarily conserved cell surface receptor that generates regulatory signals based on interactions between neighboring cells. In Drosophila embryos it is normally expressed at a low level due to strong negative regulation. When this negative regulation is abrogated neurogenesis in the ventral region is suppressed, the development of lateral epidermis is severely disrupted, and the dorsal aminoserosa is expanded. Of these phenotypes only the anti-neurogenic phenotype could be linked to excess canonical Notch signaling. The other phenotypes were linked to high levels of Notch protein expression at the surface of cells in the lateral regions indicating that a non-canonical Notch signaling activity normally functions in these regions. Results of our studies reported here provide evidence. They show that Notch activities are inextricably linked to that of Pkc98E, the homolog of mammalian PKCδ. Notch and Pkc98E up-regulate the levels of the phosphorylated form of IκBCactus, a negative regulator of Toll signaling, and Mothers against dpp (MAD), an effector of Dpp signaling. Our data suggest that in the lateral regions of the Drosophila embryos Notch activity, in conjunction with Pkc98E activity, is used to form the slopes of the opposing gradients of Toll and Dpp signaling that specify cell fates along the dorso-ventral axis.  相似文献   

12.
13.
Heparan sulfate (HS) regulates the activity of various ligands and is involved in molecular recognition events on the cell surface and in the extracellular matrix. Specific binding of HS to different ligand proteins depends on the sulfation pattern of HS. For example, the interaction between antithrombin and a particular 3-O sulfated HS motif is thought to modulate blood coagulation. However, a recent study of mice defective for this modification suggested that 3-O sulfation plays other biological roles. Here, we show that Drosophila melanogaster HS 3-O sulfotransferase-b (Hs3st-B), which catalyzes HS 3-O sulfation, is a novel component of the Notch pathway. Reduction of Hs3st-B function by transgenic RNA interference compromised Notch signaling, producing neurogenic phenotypes. We also show that levels of Notch protein on the cell surface were markedly decreased by loss of Hs3st-B. These findings suggest that Hs3st-B is involved in Notch signaling by affecting stability or intracellular trafficking of Notch protein.  相似文献   

14.
During Drosophila development networks of genes control the developmental pathways that specify cell fates. The Notch gene is a well characterized member of some cell fate pathways, and several other genes belonging to these same pathways have been identified because they share a neurogenic null phenotype with Notch. However, it is unlikely that the neurogenic genes represent all of the genes in these pathways. The goal of this research was to use a genetic approach to identify and characterize one of the other genes that acts with Notch to specify cell fate. Mutant alleles of genes in the same pathway should have phenotypes similar to Notch alleles and should show phenotypic interactions with Notch alleles. With this approach we identified the deltex gene as a potential cell fate gene. An extensive phenotypic characterization of loss-of-function deltex phenotypes showed abnormalities (such as thick wing veins, double bristles and extra cone cells) that suggest that deltex is involved in cell fate decision processes. Phenotypic interactions between deltex and Notch as seen in double mutants showed that Notch and deltex do not code for duplicate functions and that the two genes function together in many different developing tissues. The results of these investigations lead to the conclusion that the deltex gene functions with the Notch gene in one or more developmental pathways to specify cell fate.  相似文献   

15.
Endocytosis and trafficking within the endocytosis pathway are known to modulate the activity of different signaling pathways. Epsins promote endocytosis and are postulated to target specific proteins for regulated endocytosis. Here, we present a functional link between the Notch pathway and epsins. We identify the Drosophila ortholog of epsin, liquid facets (lqf), as an inhibitor of cardioblast development in a genetic screen for mutants that affect heart development. We find that lqf inhibits cardioblast development and promotes the development of fusion-competent myoblasts, suggesting a model in which lqf acts on or in fusion-competent myoblasts to prevent their acquisition of the cardioblast fate. lqf and Notch exhibit essentially identical heart phenotypes, and lqf genetically interacts with the Notch pathway during multiple Notch-dependent events in Drosophila. We extended the link between the Notch pathway and epsin function to C. elegans, where the C. elegans lqf ortholog acts in the signaling cell to promote the glp-1/Notch pathway activity during germline development. Our results suggest that epsins play a specific, evolutionarily conserved role to promote Notch signaling during animal development and support the idea that they do so by targeting ligands of the Notch pathway for endocytosis.  相似文献   

16.
The catalytic subunit of gamma-secretase is thought to be Presenilin, which is required for both the cleavage of APP and in the processing of Notch. Presenilin is found in a multisubunit complex that also contains Nicastrin. Nicastrin has been implicated in APP processing, but its role in Notch signaling remains unclear. Here we show that Drosophila Nicastrin is required for Notch signaling, and acts specifically at the S3 cleavage step. Partially processed Notch accumulates apically in nicastrin and presenilin mutant follicle cells. nicastrin and presenilin mutations also disrupt the spectrin cytoskeleton, suggesting that the gamma-secretase complex has another function in Drosophila in addition to its role in processing Notch and APP.  相似文献   

17.
The cleavage of proteins within their transmembrane domain by Presenilin (PS) has an important role in different signalling pathways and in Alzheimer's disease. Nevertheless, not much is known about the regulation of PS activity. It has been suggested that substrate recognition by the PS complex depends only on the size of the extracellular domain independent of the amino-acid sequence and that PS activity is constitutive in all cells that express the minimal components of the complex. We report here the development of an in vivo reporter system that allowed us to analyse the processing of human amyloid precursor protein (APP) and the Notch receptor tissue specifically during Drosophila development in the living organism. Using this system, we demonstrate differences between APP and Notch processing and show that PS-mediated cleavage of APP can be regulated in different cell types independent of the size of the extracellular domain.  相似文献   

18.
The familial Alzheimer's disease gene product beta-amyloid (Abeta) precursor protein (APP) is processed by the beta- and gamma-secretases to produce Abeta as well as AID (APP Intracellular Domain) which is derived from the extreme carboxyl terminus of APP. AID was originally shown to lower the cellular threshold to apoptosis and more recently has been shown to modulate gene expression such that it represses Notch-dependent gene expression while in combination with Fe65 it enhances gene activation. Here we report that the two other members of the APP family, beta-amyloid precursor-like protein-1 and -2 (APLP1 and APLP2), are also processed by the gamma-secretase in a Presenilin 1-dependent manner. Furthermore, the extreme carboxyl-terminal fragments produced by this processing (here termed APP-like Intracellular Domain or ALID1 and ALID2) are able to enhance Fe65-dependent gene activation, similar to what has been reported for AID. Considering that only APP and not the APLPs have been linked to familial Alzheimer's disease (AD), this data should help in understanding the physiologic roles of the APP family members and in differentiating these functions from the pathologic role of APP in Alzheimer's disease.  相似文献   

19.
Abstract: The Alzheimer amyloid precursor (APP) protein is a member of a family of glycoproteins that includes the amyloid precursor-like proteins (APLPs). Previously, we showed that in C6 glioma cell cultures, secreted APP nexin II occurs as the core protein of a chondroitin sulfate proteoglycan (CSPG). Here, we report that among seven untransfected cell lines, expression of secreted APP CSPG was restricted to two cell lines of neural origin, namely, C6 glioma and Neuro-2a neuroblastoma (N2a) cells. Addition of dibutyryl cyclic AMP in N2a cultures, a treatment that induces the neuronal phenotype in these cells, resulted in a significant reduction in the amount of the secreted APP CSPG, although secretion of APP was only marginally affected. Growth in the presence of serum increased the size of the secreted APP CSPG, suggesting that the number and/or length of the chondroitin sulfate (CS) chains attached to the core APP varies with growth conditions. Extensive mapping with epitope-specific anti-bodies suggested that a CS chain is attached within or proximal to the Aβ sequence of APP. In contrast to the restricted expression of the APP CSPG, expression of secreted APLP2 CSPGs was observed in all cell lines examined. After chondroitinase treatment, two core proteins of ∼100 and 110 kDa were obtained that reacted with an APLP2-specific antiserum, suggesting that non-transfected cell lines contain at least two endogenous APLP2 CSPGs, probably derived by alternative splicing of the APLP2 KPI domain. The fraction of the APLP2 proteins in the CSPG form was dependent on the particular cell line examined. The proteoglycan nature of APP and APLP2 suggests that addition of the CS glycosaminoglycan chains is important for the implementation of the biological function of these proteins. However, the differential expression of these two proteoglycans suggests that their physiological roles and their possible involvement in Alzheimer's disease may differ.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号