首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Autoradiographic studies using [125I]iodomelatonin in several species, including the Syrian hamster, have revealed that the rostral region of the anterior paraventricular nucleus of the thalamus (aPVT) contains a very high density of binding sites for melatonin. In two studies, small or large bilateral electrolytic lesions of the aPVT were made in adult male hamsters maintained on long days (LD 16:8). The hamsters were then transferred to short days (LD 8:16) to test whether testicular regression could occur in response to a decrease in photoperiod. Serum prolactin concentrations were measured as a second photoperiodic response. All unoperated control hamsters showed the typical short-day photoperiodic response: A decrease in serum luteinizing hormone (LH) and prolactin concentrations and testicular regression all occurred within 6 weeks in short days, followed by the development of scotorefractoriness. Lesions of the aPVT did not significantly affect the rate or the degree of the short-day-induced decline in serum levels of LH or prolactin, nor the pattern of testicular regression and the subsequent expression of refractoriness. To enable us to determine whether the aPVT might be involved in the entrainment or the expression of circadian rhythms, locomotor activity was monitored continuously in lesioned and control groups in Experiment 2, prior to and following the switch to short days. The reduction in photoperiod (involving an 8-hr advance in the time of lights-off and an 8-hr extension of the dark phase) caused a decompression of the nocturnal activity bout of control animals, so that after 2 weeks in short days, activity onset had also advanced to regain its phase relationship to the timing of lights-off. A similar pattern of reentrainment was observed in lesioned animals, and no differences were observed between treatment groups in the rate of entrainment and decompression. In addition, both intact controls and animals bearing large bilateral lesions of the aPVT exhibited robust free-running circadian rhythms of locomotor activity when held under constant dim red light. In summary, the integrity of the aPVT is not necessary for the seasonal response of the reproductive axis and prolactin secretion to photoperiod, nor for photic entrainment of activity rhythms, in the Syrian hamster.  相似文献   

2.
LH concentrations were measured in serum collected at 10-min intervals from chronically ovariectomized female Syrian hamsters that had been maintained for 9 wk in stimulatory (long) or inhibitory (short) photoperiods. Short days reduced the number of detectable LH pulses during both the morning and the afternoon. Most short-day hamsters experienced a gradual afternoon rise in serum LH concentrations; this rise was not composed of multiple pulses. In separate groups of similarly treated hamsters, pituitary LH-beta mRNA abundance was significantly reduced by short-day exposure at both times of day even though serum LH concentrations rose in the afternoon. Estradiol treatment induced an afternoon surge of serum LH in both photoperiods, and eliminated the effect of photoperiod on LH-beta mRNA abundance in the afternoon. Serum prolactin (PRL) concentrations were not consistently influenced by day length in castrated hamsters with or without estrogen treatment, but PRL mRNA abundance was significantly suppressed by short-day exposure in all groups. The results indicate that day length exerts profound steroid-independent effects upon hypophyseal gene expression, and that the regulation of LH-beta mRNA abundance may be due to photoperiodic control of the neural GnRH pulse generator.  相似文献   

3.
Exposure to short days for 8 weeks suppressed mean serum concentrations of FSH, LH and prolactin compared to hamsters kept in long days. Hamsters in short days exhibited a small afternoon rise in serum FSH, but serum LH and prolactin did not exhibit 24-h variations. In hamsters under long days, a late afternoon-early evening increase was evident for circulating prolactin but none was detected for the gonadotrophins. A fall in testes weights rapidly occurred by 14-28 days after transfer to short days. This was accompanied or preceded by a decrease in serum gonadotrophins and prolactin. Reductions in serum FSH and LH occurred in short days in blood samples taken at 09:00 h or 15:00 h. However, the nadir in serum prolactin was first achieved (at 09:00 h), at least 7 days before that at 15:00 h (i.e. Day 14 versus Day 21 of short photoperiod, respectively). The ability to secrete gonadotrophins was further tested in hamsters that had undergone gonadal regression. Castration of hamsters exposed to short days or injected with melatonin in the afternoon, a treatment known to mimic short day effects, induced a 3- to 5-fold increase in serum gonadotrophins. However, this rise in FSH and LH was significantly attenuated compared to the 10-fold response in controls in long days. The results indicate that gonadal involution induced by short days may be mediated by the decline in mean gonadotrophin secretion which, in turn, is regulated by responsiveness to steroids, as well as a mechanism independent of the negative feedback action of gonadal steroids.  相似文献   

4.
Reproductive effects of olfactory bulbectomy in the Syrian hamster   总被引:2,自引:0,他引:2  
The effects of olfactory bulbectomy on circulating gonadotropin, prolactin and testosterone levels and on the testicular and pituitary responses to shortening of day length were studied in Syrian hamsters. Adult animals maintained on a 14L:10D cycle were sham-operated or sustained bilateral radical olfactory bulbectomies by aspiration to remove the main and accessory olfactory bulbs and the adjacent regions of the anterior olfactory nucleus. They were then maintained either on the long photoperiod or housed on a 10L:14D cycle. Testicular length was measured at weekly intervals over a 5-mo period. Sham-operated controls exhibited the normal pattern of testicular regression and eventual recrudescence on the short photoperiod. Testicular regression was significantly reduced in bulbectomized animals. Many of these animals showed no regression; others exhibited a reduced degree and/or shortened duration of regression. Serum levels of follicle-stimulating hormone (FSH) were substantially elevated in bulbectomized males maintained in long days. Their serum levels of luteinizing hormone (LH), prolactin and testosterone remained within the range for shams on long photoperiod. In short days, the bulbectomized animals showed the normal, pronounced decline in circulating prolactin levels. Serum FSH and LH levels also showed substantial declines, but the FSH levels were not reduced below the range for controls in long days, and the decline in LH levels was not as great as that for controls in short days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Castrated hamsters which were transferred from long (14L:10D) to short (9L:15D) days and received testosterone-filled capsules for 1 week after transfer failed to show a significant suppression in the plasma levels of FSH and LH after capsule removal. In contrast, gonadotrophin concentrations were suppressed in hamsters in which the long-day castration response had been blocked with exogenous testosterone. After castration on long days and exposure to 10 weeks of short days pituitary gland weight and gonadotrophin content, as well as plasma FSH titres, were higher in control animals than in those that had received testosterone implants for 7 weeks of short days. The results suggest that failure of castrated hamsters to respond to the suppressive effects of short days reflects castration-induced changes in hypothalamo-pituitary physiology rather than a neuroendocrine mechanism by which photoperiod modulates gonadotrophin secretion.  相似文献   

6.
Castrate rams and ovariectomized ewes were maintained in the presence of entire rams and ewes and subjected to successive periods of alternating 6 h light:18 h darkness ('short' days) and 18 h light:6 h darkness ('long' days) preceded by a period of 12 h light:12 h darkness ('constant' light days). Plasma concentrations of LH and prolactin were measured in the castrate animals in order to determine how LH and prolactin secretion responded to the artificial light regime and corresponding periods of elevated or depressed testicular and ovarian activity in the entire rams and ewes. There was no variation in mean plasma LH concentrations or LH pulse frequency with either the changes in photoperiod or the phases of gonadal activity in the entire animals. However, there was a highly significant (P less than 0.001) relationship between prolactin secretion and the artificial photoperiod in both castrate groups with high and low levels coinciding with long and short days respectively. In addition, there was a marginally significant (P less than 0.1) relationship between prolactin secretion in the castrate ram and the stage of testicular activity in the entire rams with elevated levels associated with regressed activity. Prolactin secretion in the ovariectomized ewes was significantly (P less than 0.05) related to the phase of ovarian development with high levels associated with acyclic activity. It is concluded that LH secretion and pituitary responsiveness to exogenous GnRH were not modified by the artificial light regime. However, the changing light pattern was physiologically 'perceived' by the castrate animals as indicted by a concomitant variation in plasma prolactin concentrations.  相似文献   

7.
In this study, the authors asked whether pinealectomy or temporary exposure to a stimulatory photoperiod affects the timing of spontaneous testicular recrudescence in adult Siberian hamsters chronically exposed to short days (9:15 light:dark). In Experiment 1, hamsters were pinealectomized after 6, 9, or 12 weeks in short days. Pinealectomy after 9 or 12 weeks did not affect the timing of spontaneous gonadal growth (27.7 +/- 1.9 and 25.4 +/- 1.3 weeks, respectively) compared to sham-operated controls (28.6 +/- 0.9 weeks). Enlarged testes occurred earlier in animals that were pinealectomized after 6 weeks in short days (21.8 +/- 2.1 weeks). In Experiment 2, adult hamsters were exposed to short days for 9 weeks, transferred to long days (16:8 light:dark) for 4 weeks, and then returned to short days for 23 additional weeks. Although long-day interruption caused gonadal growth in 15 out of 19 hamsters, the temporary long-day exposure did not affect the timing of spontaneous gonadal growth following return to short days (28.2 +/- 0.9 weeks) in 10 of the 15, relative to the timing observed in control hamsters continuously maintained in short days (28.2 +/- 1.1 weeks). Four out of 19 hamsters did not show gonadal growth following long-day exposure. Spontaneous gonadal growth in these hamsters (28.0 +/- 1.4 weeks) also occurred at the same time as controls. The remaining 5 hamsters exhibited enlarged testes following long-day exposure (12.0 +/- 0.0 weeks) but were refractory to the second short-day exposure. All hamsters exhibited entrainment of wheel-running activity following the change in photoperiod. A final group of 13 animals were pinealectomized before long-day transfer. They exhibited gonadal growth (at 17.2 +/- 0.8 weeks) but failed to regress a second time when returned to short days. The timing of gonadal growth in these animals was delayed relative to the sham-operated hamsters temporarily transferred to long days (Experiment 2) but accelerated relative to the hamsters pinealectomized at 9 weeks, which remained continuously in short days (Experiment 1). The results of both experiments suggest that a pineal-independent process mediates the timing of spontaneous gonadal growth in Siberian hamsters chronically exposed to a short-day photoperiod.  相似文献   

8.
Many nontropical rodent species display seasonal changes in both physiology and behavior that occur primarily in response to changes in photoperiod. Short-day reductions in reproduction are due, in part, to reductions in gonadal steroid hormones. In addition, gonadal steroids, primarily testosterone (T), have been implicated in aggression in many mammalian species. Some species, however, display increased aggression in short days despite basal circulating concentrations of T. The goal of the present studies was to test the effects of photoperiod on aggression in male Siberian hamsters (Phodopus sungorus) and to determine the role of T in mediating photoperiodic changes in aggression. In Experiment 1, hamsters were housed in long and short days for either 10 or 20 weeks and aggression was determined using a resident-intruder model. Hamsters housed in short days for 10 weeks underwent gonadal regression and displayed increased aggression compared to long-day-housed animals. Prolonged maintenance in short days (i.e., 20 weeks), however, led to gonadal recrudescence and reduced aggression. In Experiment 2, hamsters were housed in long and short days for 10 weeks. Half of the short-day-housed animals were implanted with capsules containing T whereas the remaining animals received empty capsules. In addition, half of the long-day-housed animals were castrated whereas the remaining animals received sham surgeries. Short-day control hamsters displayed increased aggression compared to either castrated or intact long-day-housed animals. Short-day-housed T treated hamsters, however, did not differ in aggression from long-day-housed animals. Collectively, these results confirm previous findings of increased aggression in short-day-housed hamsters and suggest that short-day-induced increases in aggression are inversely related to gonadal steroid hormones.  相似文献   

9.
The duration of nocturnal pineal melatonin secretion transduces effects of day length (DL) on the neuroendocrine axis of photoperiodic rodents. Long DLs support reproduction, and short DLs induce testicular regression, followed several months later by spontaneous recrudescence; gonadal regrowth is thought to reflect development of tissue refractoriness to melatonin. In most photoperiodic species, pinealectomy does not diminish reproductive competence in long DLs. Turkish hamsters (Mesocricetus brandti) deviate from this norm: elimination of melatonin secretion in long-day males by pinealectomy or constant light treatment induces testicular regression and subsequently recrudescence; the time course of these gonadal transitions is similar to that observed in males transferred from long to short DLs. In the present study, long-day Turkish hamsters that underwent testicular regression and recrudescence in constant light subsequently were completely unresponsive to the antigonadal effects of short DLs. Other hamsters that manifested testicular regression and recrudescence in short DLs were unresponsive to the antigonadal effects of pinealectomy or constant light. Long-term suppression of melatonin secretion induces a physiological state in Turkish hamsters similar or identical to the neuroendocrine refractoriness produced by short-day melatonin signals (i.e., neural refractoriness to melatonin develops in the absence of circulating melatonin secretion). A melatonin-independent interval timer, which would remain operative in the absence of melatonin during hibernation, may determine the onset of testicular recrudescence in the spring. In this respect, Turkish hamsters differ from most other photoperiodic rodents.  相似文献   

10.
Investigations were conducted to determine effects of exposure to short photoperiod--with its accompanying reductions in serum prolactin (Prl) concentrations--for various durations on testicular Prl receptors. An additional study investigated the possibility of nyctohemeral fluctuations in testicular Prl receptors and serum growth hormone (GH) concentrations and their alteration by photoperiod. After 10 and 28 days of exposure to a short photoperiod consisting of 5 h of light and 19 h darkness (5L:19D) (and prior to changes in testicular weight), there were progressive and significant reductions in the concentration of testicular Prl receptors (fmol/mg protein) when compared with long-photoperiod controls (14L:10D). After 12 weeks of 5L:19D, when testicular weights were dramatically decreased, Prl receptor concentration was reduced to 39% of long-photoperiod controls in one study, without alteration of affinity of Prl receptors for their labeled ligand. When measured at 6-h intervals in hamsters on 14L:10D, and on 5L:19D for 12 weeks, there were no significant changes in concentration or total content (fmol/testes) of testicular Prl receptors throughout the day. Although serum GH concentrations fluctuated markedly in hamsters on both photoperiods, no definitive nyctohemeral patterns were detected. These data provide indirect evidence for the ability of Prl to regulate its own testicular receptors, and demonstrate that diurnal fluctuations in testicular sensitivity to injected Prl are not a consequence of changes in Prl receptors. The data also suggest the absence of effects of photoperiod on serum GH concentrations in male golden hamsters.  相似文献   

11.
The regulation of testicular LH/hCG receptors was studied in Syrian (golden) hamsters with testicular atrophy induced by exposure to short photoperiod (5L:19D) and in gonadally active hamsters kept in a long photoperiod (14L:10D). By 24 h after injection of hCG, long-photoperiod hamsters showed a dose-related decrease in the number of testicular LH/hCG receptors. At 48 and 72 h, there was a recovery from this 'down-regulation'. The recovery was much faster than has been reported for the rat and mouse, and it resulted in elevation of testicular LH/hCG receptor concentrations above basal values. Hamsters with short photoperiod-induced testicular atrophy showed an increase in testicular LH/hCG receptors after injection of hCG, except for animals injected with a very high dose. The hCG-induced increase in testicular LH/hCG binding in these animals was associated with reappearance of testosterone responses to subsequent hCG stimulation. Response of testicular LH/hCG receptors to hCG in prepubertal hamsters resembled that measured in animals with short photoperiod-induced gonadal atrophy.  相似文献   

12.
The pineal gland, through its nocturnal melatonin secretion, mediates the effects of inhibitory (long) and stimulatory (short) photoperiod on reproduction in female sheep. Earlier studies revealed that duration of the nighttime melatonin rise is important in determining the inhibitory effect of day length on reproduction in the ewe. The present study tested whether the duration is also important in mediating the inductive response to short days. Pinealectomized ewes, housed under long days, received a short-day melatonin infusion (16-h duration) for 90 days. Reproductive status was monitored from the response to estradiol negative feedback of luteinizing hormone (LH) secretion. This short-day melatonin pattern led to unambiguous reproductive induction, despite the exposure to inhibitory long days. The increase in serum LH was comparable, in terms of latency and magnitude, to that in pinealectomized controls receiving the same short-day melatonin pattern under short days, and in pineal-intact controls transferred from long to short days. Since the reproductive status conformed to the length of time that melatonin was elevated each day rather than to photoperiod, these results support the conclusion that duration of the nighttime melatonin rise mediates the reproductive response of the ewe to an inductive photoperiod. In all, the melatonin rhythm is considered an integral component of the physiologic mechanism measuring day length; through duration of its nocturnal secretion, melatonin encodes both inhibitory and stimulatory photoperiods.  相似文献   

13.
Testicular regression and decreased serum testosterone levels result when male hamsters are placed in a short-day photoperiod, and these changes are reversed after reexposure to long-days. The present study was undertaken to determine whether these physiological changes lead to modifications in social behavior in the male hamster. Animals in a nonstimulatory short-day (LD 6:18) or a stimulatory long-day (LD 14:10) photoperiod were observed every 3 weeks for 21 weeks. After 9 weeks, half of the LD 6:18 males were returned to LD 14:10 and showed rapid testicular recrudescence. The other half remained in LD 6:18 and showed a slower rate of testicular recrudescence. Assessment of aggression was accomplished by placing an intruder in the home cage of a test animal and recording latency to attack, decisive encounters, number of attacks, and number of aggressive postures. Dominance was evaluated in a neutral arena with opponents of different weights, using the same parameters. Scent-marking was recorded in response to both bedding from an intact male and bedding from an ovariectomized female in a clean cage. Short-day animals undergoing testicular regression showed heightened levels of aggression and an upward shift in their dominance status. Alteration of the photoperiod did not affect the pattern or number of scent marks. As animals underwent testicular recrudescence, there was a return to lower levels of aggression and to a lower dominance status. Males undergoing rapid testicular recrudescence also showed the most rapid decline in aggressive behaviors. These results suggest that levels of agonistic behavior in the male hamster are inversely related to serum testosterone levels. Scent-marking appears to be unreleated to androgen levels in the male hamster and its role in hamster social behavior remains unclear.  相似文献   

14.
In mammals, removal of one testis results in compensatory testicular hypertrophy (CTH) of the remaining gonad. Although CTH is ubiquitous among juveniles of many species, laboratory rats, laboratory mice, and humans unilaterally castrated in adulthood fail to display CTH. We documented CTH in pre- and postpubertally hemi-castrated Syrian and Siberian hamsters and tested whether day length affects CTH in juvenile and adult Siberian hamsters. Robust CTH was evident in long-day hemi-castrates of both species and was preceded by increased serum FSH concentrations in juvenile Siberian hamsters. In sharp contrast, CTH was undetectable in short-day hemi-castrated Siberian hamsters for several months and only made its appearance with the development of neuroendocrine refractoriness to short day lengths; serum FSH concentrations of juveniles also did not increase above sham-castrate values until the onset of refractoriness. Long-day hemi-castrated Siberian hamsters with hypertrophied testes underwent complete gonadal regression after transfer to short days, albeit at a reduced rate for the first 3 weeks of treatment. Blood testosterone concentrations of adult hamsters did not differ between long-day hemicastrates and sham-castrates 9-12 weeks after surgery. We conclude that CTH is suppressed by short day lengths in Siberian hamsters at all ages and stages of reproductive development; in short day lengths, but not long day lengths, the remaining testis produces sufficient negative feedback inhibition to restrain FSH hypersecretion and prevent CTH.  相似文献   

15.
Male golden hamsters were transferred from long to short days and castrated on the day of transfer (Group SP0) or 1, 2 or 3 weeks afterwards (Groups SP1, SP2 & SP3). Animals in Group LP were castrated and maintained on long days. After 7 weeks of short days, plasma levels of LH and FSH were low in Groups SP1, SP2, and SP3. In Group SP0 LH output was also low and FSH secretion, although greater than in Groups SP1, SP2 and SP3, was lower than in the long-day controls (Group LP). This photoperiodic control of gonadotrophin secretion in castrated hamsters raises doubts about the significance of hypothetical alterations in hypothalamo-pituitary sensitivity to sex steroids.  相似文献   

16.
The effects of artificial photoperiod, temperature, and long-term testosterone treatment on testicular luteinizing hormone (LH) binding were studied in adult male Djungarian hamsters. In hamsters transferred to long-day (LD; 16 hr light, 8 hr dark) photoperiod 8 weeks after adaptation in short-day (SD; 8 hr light, 16 hr dark) photoperiod of 25 degrees C, testicular growth was associated with an increase in the total LH binding per two testes and a decrease in LH binding per unit testicular weight. Plasma testosterone levels reached a peak 47 days after transfer to LD and tended to decrease thereafter, while the testes continued growing. In contrast, when hamsters reared under LD conditions at 25 degrees C for 12 weeks were transferred to SD, testicular regression was associated with a decrease in plasma testosterone and the total LH binding per two testes and an increase in LH binding per unit testicular weight. A significant decrease in LH binding per unit weight compared to SD controls was observed in those hamsters exposed to SD with continuous testosterone treatment. The testosterone treatment tended to induce decrease in the total LH binding. Scatchard plot analyses of the binding suggested that changes in LH binding were due to changes in the number of binding sites. When sexually mature male hamsters were subjected for 8 weeks to two different ambient temperatures (7 degrees C and 25 degrees C) and photoperiods (LD and SD), the difference between the two temperature groups was statistically not significant regarding the weights of testes, epididymides, and prostates; plasma testosterone levels; and LH binding in either LD or SD group. These results suggest that photoperiod is a more important environmental factor than temperature for the regulation of testicular activity and LH receptors and that testosterone reduces the number of LH receptors per unit testicular weight in adult male Djungarian hamsters.  相似文献   

17.
Daily subcutaneous injections of melatonin cause testicular regression and a decline in circulating gonadotropin levels in male hamsters maintained on long photoperiods. We examine here if a reduction in gonadotropin levels also occurs in castrates administered melatonin and if melatonin-regressed hamsters respond to castration with an increased release of pituitary gonadotropins — a typical “castration response.” Groups of intact and castrated male hamsters maintained on a photoperiod of LD 14:10 received subcutaneous injections of 15 ug melatonin/day. Controls received vehicle only. After 7 weeks of injections the intact males were castrated. All animals were sacrificed a few days later and serum was assayed for gonadotropin titers. Melatonin injections caused a marked decline in serum gonadotropins in castrates and in intact males also caused testicular regression. In the latter, no “castration response” was observed upon removal of the testes. Thus, daily injections of melatonin depress serum gonadotropins in castrate and intact males and block the castration-associated rise in circulating gonadotropins in the latter.  相似文献   

18.
Daily afternoon injections of 25 micrograms melatonin for 12 weeks had no effect on testicular weights of male rats kept in long photoperiod (14L:10D); similarly, exposure of rats to short photoperiod (2L:22D) had no effect on gonadal weight. However, rats maintained in a long or short photoperiod and implanted every 2 weeks with a 15 mm Silastic pellet containing testosterone showed a significant reduction in testicular weight; this effect was more pronounced in rats exposed to a short photoperiod. Melatonin injections in testosterone-treated rats in a long photoperiod exacerbated the inhibitory effects of testosterone alone. Subcutaneous 2-weekly implants of a beeswax pellet containing 1 mg melatonin reversed the effects of the melatonin injections on relative testicular weights but not those due to short photoperiod exposure. Testosterone implants significantly reduced pituitary LH values in long and short photoperiod-exposed animals, more particularly in those exposed to short photoperiod. Melatonin injections alone or in combination with melatonin pellets did not further exaggerate the depression in pituitary LH due to testosterone alone in long photoperiod-exposed animals; similarly melatonin pellets did not reverse the depression in pituitary LH observed. No significant differences in plasma prolactin concentrations or in thyroxine concentrations or free thyroxine index were observed after any combination of treatments. We therefore suggest that the effects observed with short photoperiod may be due to melatonin.  相似文献   

19.
Among individuals of many nontropical species, seasonal breeding is timed by tracking changes in the daily photoperiod. Transfer of rodents to short (< 12 h of light/day) day lengths for 6 to 14 weeks can induce regression of the testes mediated by apoptosis. After 16 to 20 weeks of short day exposure, reproductive function is "spontaneously" initiated, and testicular recrudescence is observed. The gonadal mechanisms that underlie testicular recrudescence are not fully understood. If the onset of testicular regrowth that occurs during spontaneous recrudescence reflects a down-regulation of apoptotic signals, then a decline in apoptosis should be noted concurrent with increased testis mass. This experiment sought to assess the role of apoptosis in the restoration of reproductive capacity to photoperiod-inhibited white-footed mice. Males were assigned to long (16:8 LD) or short (8:16 LD) photoperiods for 0, 14, 18, 22, 26, or 30 weeks. At each of these time points, testis mass and testosterone concentrations were assessed. In addition, apoptotic activity was measured using both in situ terminal deoxynucleotidyl transferase dNTP end labeling (TUNEL) and DNA laddering. Short photoperiod exposure induced maximal decreases in testicular parameters after 14 weeks (p < 0.05). After 26 weeks of short days, testis mass was no longer different between males housed in long days and those housed in short days. In contrast, the high incidence of apoptotic TUNEL labeling and DNA laddering observed at 14 weeks was reduced to long day values after 22 weeks of short day exposure. Together, our results establish that a decrease in testicular apoptosis coincides with testicular recrudescence in white-footed mice. The current study demonstrates a decline in the incidence of testicular cell death concomitant with changes in testis mass or length, elucidating a timeline of changes at the cellular level related to the onset of recrudescence.  相似文献   

20.
The Siberian hamster displays seasonal changes in pelage that are dependent upon fluctuations in circulating prolactin levels. Pinealectomy prevented the decrease in serum prolactin and molt to the winter pelage displayed by castrated males housed under a short-day photoperiod. A dopaminergic antagonist, pimozide, enhanced prolactin levels in both pinealectomized and sham-operated animals under both long and short photoperiods. In the short-day animals, this effect of pimozide was associated with a prevention of the development of winter pelage. These results indicate that seasonal prolactin levels and related pelage changes are dependent upon the integrity of the pineal gland. However, basal prolactin levels under different photoperiod conditions appear to be only partly regulated by the actions of the dopaminergic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号