首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
[URE3] is a non-Mendelian genetic element in Saccharomyces cerevisiae, which is caused by a prion-like, autocatalytic conversion of the Ure2 protein (Ure2p) into an inactive form. The presence of [URE3] allows yeast cells to take up ureidosuccinic acid in the presence of ammonia. This phenotype can be used to select for the prion state. We have developed a novel reporter, in which the ADE2 gene is controlled by the DAL5 regulatory region, which allows monitoring of Ure2p function by a colony color phenotype. Using this reporter, we observed induction of different [URE3] prion variants ("strains") following overexpression of the N-terminal Ure2p prion domain (UPD) or full-length Ure2p. Full-length Ure2p induced two types of [URE3]: type A corresponds to conventional [URE3], whereas the novel type B variant is characterized by relatively high residual Ure2p activity and efficient curing by coexpression of low amounts of a UPD-green fluorescent protein fusion protein. Overexpression of UPD induced type B [URE3] but not type A. Both type A and B [URE3] strains, as well as weak and strong isolates of type A, were shown to stably maintain different prion strain characteristics. We suggest that these strain variants result from different modes of aggregation of similar Ure2p monomers. We also demonstrate a procedure to counterselect against the [URE3] state.  相似文献   

2.
[URE3] is a non-Mendelian genetic element of the yeast Saccharomyces cerevisiae, an altered prion form of Ure2 protein. We show that recombinant Ure2p is a soluble protein that can assemble in vitro into dimers, tetramers, and octamers or form insoluble fibrils observed for PrP in its filamentous form or for Sup35p upon self-assembling, suggesting a similar mechanism for all prions. Computational, genetic, biochemical, and structural data allow us to specify a new boundary between the so-called prion-forming and nitrogen regulator (catalytic) domains of the protein and to map this boundary to Met-94. We bring strong evidence that the COOH-terminal (94-354) part of the protein forms a tightly folded domain, while the NH2-terminal (1-94) part is unstructured. These domains (or various parts of these domains) were shown (by means of the two-hybrid system approach and affinity binding experiments) to interact with each other (both in vivo and in vitro). We bring also evidence that the COOH-terminal (94-354) catalytically active part of the protein can be synthesized (both in vitro and in vivo) via an internal ribosome-binding mechanism, independently of the production of the full-length protein. We finally show that Ure2p aggregation in vivo (monitored by fluorescence of Ure2p--GFP fusion) does not necessarily give rise to [URE3] phenotype. The significance of these findings for the appearance and propagation of the yeast prion [URE3] is discussed.  相似文献   

3.
The aggregation of the two yeast proteins Sup35p and Ure2p is widely accepted as a model for explaining the prion propagation of the phenotypes [PSI+] and [URE3], respectively. Here, we demonstrate that the propagation of [URE3] cannot simply be the consequence of generating large aggregates of Ure2p, because such aggregation can be found in some conditions that are not related to the prion state of Ure2p. A comparison of [PSI+] and [URE3] aggregation demonstrates differences between these two prion mechanisms. Our findings lead us to propose a new unifying model for yeast prion propagation.  相似文献   

4.
5.
The [URE3] prion is not conserved among Saccharomyces species   总被引:2,自引:2,他引:0       下载免费PDF全文
Talarek N  Maillet L  Cullin C  Aigle M 《Genetics》2005,171(1):23-34
The [URE3] prion of Saccharomyces cerevisiae is a self-propagating inactive form of the nitrogen catabolism regulator Ure2p. To determine whether the [URE3] prion is conserved in S. cerevisiae-related yeast species, we have developed genetic tools allowing the detection of [URE3] in Saccharomyces paradoxus and Saccharomyces uvarum. We found that [URE3] is conserved in S. uvarum. In contrast, [URE3] was not detected in S. paradoxus. The inability of S. paradoxus Ure2p to switch to a prion isoform results from the primary sequence of the protein and not from the lack of cellular cofactors as heterologous Ure2p can propagate [URE3] in this species. Our data therefore demonstrate that [URE3] is conserved only in a subset of Saccharomyces species. Implications of our finding on the physiological and evolutionary meaning of the yeast [URE3] prion are discussed.  相似文献   

6.
[URE3] is a prion (infectious protein), a self-propagating amyloid form of Ure2p, a regulator of yeast nitrogen catabolism. We find that overproduction of Btn2p, or its homologue Ypr158 (Cur1p), cures [URE3]. Btn2p is reported to be associated with late endosomes and to affect sorting of several proteins. We find that double deletion of BTN2 and CUR1 stabilizes [URE3] against curing by several agents, produces a remarkable increase in the proportion of strong [URE3] variants arising de novo and an increase in the number of [URE3] prion seeds. Thus, normal levels of Btn2p and Cur1p affect prion generation and propagation. Btn2p-green fluorescent protein (GFP) fusion proteins appear as a single dot located close to the nucleus and the vacuole. During the curing process, those cells having both Ure2p-GFP aggregates and Btn2p-RFP dots display striking colocalization. Btn2p curing requires cell division, and our results suggest that Btn2p is part of a system, reminiscent of the mammalian aggresome, that collects aggregates preventing their efficient distribution to progeny cells.  相似文献   

7.
The [URE3] yeast prion is a self-propagating inactive form of the Ure2 protein. Ure2p is composed of two domains, residues 1-93, the prion-forming domain, and the remaining C-terminal part of the protein, which forms the functional domain involved in nitrogen catabolite repression. In vitro, Ure2p forms amyloid filaments that have been proposed to be the aggregated prion form found in vivo. Here we showed that the biochemical characteristics of these two species differ. Protease digestions of Ure2p filaments and soluble Ure2p are comparable when analyzed by Coomassie staining as by Western blot. However, this finding does not explain the pattern specifically observed in [URE3] strains. Antibodies raised against the C-terminal part of Ure2p revealed the existence of proteolysis sites efficiently cleaved when [URE3], but not wild-type crude extracts, were submitted to limited proteolysis. The same antibodies lead to an equivalent digestion pattern when recombinant Ure2p (either soluble or amyloid) was analyzed in the same way. These results strongly suggest that aggregated Ure2p in [URE3] yeast cells is different from the amyloid filaments generated in vitro.  相似文献   

8.
《朊病毒》2013,7(4):258-262
The yeast prions [URE3] and [PSI] are not found in wild strains, suggesting they are not an advantage. Prion-forming ability is not conserved, even within Saccharomyces, suggesting it is a disease. Prion domains have non-prion functions, explaining some conservation of sequence. However, in spite of the sequence being constrained in evolution by these non-prion functions, the prion domains vary more rapidly than the remainder of the molecule, and these changes produce a transmission barrier, suggesting that these changes were selected to block prion infection. Yeast prions [PSI] and [URE3] induce a cellular stress response (Hsp104 and Hsp70 induction), suggesting the cells are not happy about being infected. Recently, we showed that the array of [PSI] and [URE3] prions includes a majority of lethal or very toxic variants, a result not expected if either prion were an adaptive cellular response to stress.  相似文献   

9.
The yeast prions [URE3] and [PSI] are not found in wild strains, suggesting they are not an advantage. Prion-forming ability is not conserved, even within Saccharomyces, suggesting it is a disease. Prion domains have non-prion functions, explaining some conservation of sequence. However, in spite of the sequence being constrained in evolution by these non-prion functions, the prion domains vary more rapidly than the remainder of the molecule, and these changes produce a transmission barrier, suggesting that these changes were selected to block prion infection. Yeast prions [PSI] and [URE3] induce a cellular stress response (Hsp104 and Hsp70 induction), suggesting the cells are not happy about being infected. Recently, we showed that the array of [PSI] and [URE3] prions includes a majority of lethal or very toxic variants, a result not expected if either prion were an adaptive cellular response to stress.Key words: [URE3], [PSI+], prion, Sup35p, Ure2pfMammalian prions are uniformly fatal, but a lethal yeast prion would not be detected by the usual procedure, which requires growth of a colony under some selective condition. As a result, the prion variants commonly studied are quite mild in their effects. This circumstance has led to the suggestion that yeast prions actually benefit their host. Sup35p, the translation termination subunit whose amyloid becomes the [PSI+] prion, is essential for growth and Ure2p, the nitrogen regulation protein whose amyloid constitutes the [URE3] prion, is important for growth, with ure2 mutants showing noticeably slowed growth.When yeast prions were discovered,1 we assumed they were diseases, by analogy with the mammalian diseases and the many non-prion amyloid diseases. Inactivating the essential Sup35p or the desireable Ure2p did not seem like a useful strategy. While control of either protein''s activity might be advantageous, and Ure2p activity control is the key to regulation of nitrogen catabolism, prion formation is a stochastic process, so it makes control of activity of these proteins random instead of appropriate to the circumstances. The [Het-s] prion changed that picture.2 Here was a prion necessary for a normal function, heterokaryon incompatibility, and we suggested that it was the first beneficial prion.3  相似文献   

10.
The [URE3] phenotype in Saccharomyces cerevisiae is caused by the inactive, altered (prion) form of the Ure2 protein (Ure2p), a regulator of nitrogen catabolism. Ure2p has two functional domains: an N-terminal domain necessary and sufficient for prion propagation and a C-terminal domain responsible for nitrogen regulation. We show here that the mRNA encoding Ure2p possesses an IRES (internal ribosome entry site). Internal initiation leads to the synthesis of an N-terminally truncated active form of the protein (amino acids 94-354) lacking the prion-forming domain. Expression of the truncated Ure2p form (94-354) mediated by the IRES element cures yeast cells of the [URE3] phenotype. We assume that the balance between the full-length and truncated (94-354) Ure2p forms plays an important role in yeast cell physiology and differentiation.  相似文献   

11.
The yeast [PSI(+)], [URE3], and [PIN(+)] genetic elements are prion forms of Sup35p, Ure2p, and Rnq1p, respectively. Overexpression of Sup35p, Ure2p, or Rnq1p leads to increased de novo appearance of [PSI(+)], [URE3], and [PIN(+)], respectively. This inducible appearance of [PSI(+)] was shown to be dependent on the presence of [PIN(+)] or [URE3] or overexpression of other yeast proteins that have stretches of polar residues similar to the prion-determining domains of the known prion proteins. In a similar manner, [PSI(+)] and [URE3] facilitate the appearance of [PIN(+)]. In contrast to these positive interactions, here we find that in the presence of [PIN(+)], [PSI(+)] and [URE3] repressed each other's propagation and de novo appearance. Elevated expression of Hsp104 and Hsp70 (Ssa2p) had little effect on these interactions, ruling out competition between the two prions for limiting amounts of these protein chaperones. In contrast, we find that constitutive overexpression of SSA1 but not SSA2 cured cells of [URE3], uncovering a specific interaction between Ssa1p and [URE3] and a functional distinction between these nearly identical Hsp70 isoforms. We also find that Hsp104 abundance, which critically affects [PSI(+)] propagation, is elevated when [URE3] is present. Our results are consistent with the notion that proteins that have a propensity to form prions may interact with heterologous prions but, as we now show, in a negative manner. Our data also suggest that differences in how [PSI(+)] and [URE3] interact with Hsp104 and Hsp70 may contribute to their antagonistic interactions.  相似文献   

12.
Ripaud L  Maillet L  Cullin C 《The EMBO journal》2003,22(19):5251-5259
The yeast prion [URE3] is a self-propagating inactive form (the propagon) of the Ure2 protein. Ure2p is composed of two domains: residues 1-93--the prion-forming domain (PFD)--and the remaining C-terminal part of the protein, which forms the functional domain involved in nitrogen catabolite repression. Guanidine hydrochloride, and the overproduction of Ure2p 1-65 or Ure2-GFP have been shown to induce the elimination of [URE3]. We demonstrate here, two different curing mechanisms: the inhibition of [URE3] replication by guanidine hydrochloride and its destruction by Ure2p aggregation. Such aggregation is observed if PFD or Ure2-GFP are overproduced and in heterozygous URE2/URE2-GFP, [URE3] diploids. We found that the GFP foci associated with the presence of the prion were dead-end products, the propagons remaining soluble. Surprisingly, [URE3] propagated via the Ure2-GFP fusion protein alone is resistant to these two curing mechanisms and cannot promote the formation of foci. The relationship between aggregation, prion and Hsp104 gives rise to a model in which the propagon is in equilibrium with larger aggregates and functional protein.  相似文献   

13.
14.
Infectious proteins (prions) in yeast or other microorganisms can be identified by genetic methods of rather general applicability. Infection in yeast means transfer by cytoplasmic mixing (cytoduction), a property of all non-chromosomal genetic elements whether plasmids, viruses, or prions. Prions can be diagnosed by reversible curability, increased occurrence when the corresponding protein is overproduced, a requirement for the gene for the corresponding protein for propagation, and, in some cases, similarity of phenotype of: (a) mutations in the gene for the protein and (b) the presence of the prion. This approach is illustrated with [URE3], an amyloid-based prion of the regulator of nitrogen catabolism, Ure2p and [PSI(+)] as a prion of the translation termination factor Sup35p. The prion concept is not limited to infectious amyloids, but includes proteins whose active form is necessary for the activation of the inactive precursor. We detail methods used in studies of [URE3] and [beta], a self-activating protease, some of which are of broad application.  相似文献   

15.
[URE3] and [PSI] are two non-Mendelian genetic elements discovered over 25 years ago and never assigned to a nucleic acid replicon. Their genetic properties led us to propose that they are prions, altered self-propagating forms of Ure2p and Sup35p, respectively, that cannot properly carry out the normal functions of these proteins. Ure2p is partially protease-resistant in [URE3] strains and Sup35p is aggregated specifically in [PSI] strains supporting this idea. Overexpression of Hsp104 cures [PSI], as does the absence of this protein, suggesting that the prion change of Sup35p in [PSI] strains is aggregation. Strains of [PSI], analogous to those described for scrapie, have now been described as well as an in vitro system for [PSI] propagation. Recently, two new potential prions have been described, one in yeast and the other in the filamentous fungus, Podospora.  相似文献   

16.
Yeast prions require a core set of chaperone proteins including Sis1, Hsp70 and Hsp104 to generate new amyloid templates for stable propagation, yet emerging studies indicate that propagation of some prions requires additional chaperone activities, demonstrating chaperone specificity beyond the common amyloid requirements. To comprehensively assess such prion‐specific requirements for the propagation of the [URE3] prion variant [URE3‐1], we screened 12 yeast cytosolic J‐proteins, and here we report a novel role for the J‐protein Swa2/Aux1. Swa2 is the sole yeast homolog of the mammalian protein auxilin, which, like Swa2, functions in vesicle‐mediated endocytosis by disassembling the structural lattice formed by the protein clathrin. We found that, in addition to Sis1, [URE3‐1] is specifically dependent upon Swa2, but not on any of the 11 other J‐proteins. Further, we show that [URE3‐1] propagation requires both a functional J‐domain and the tetratricopeptide repeat (TPR) domain, but surprisingly does not require Swa2‐clathrin binding. Because the J‐domain of Swa2 can be replaced with the J‐domains of other proteins, our data strongly suggest that prion‐chaperone specificity arises from the Swa2 TPR domain and supports a model where Swa2 acts through Hsp70, most likely to provide additional access points for Hsp104 to promote prion template generation.  相似文献   

17.
Prions are self-propagating, infectious aggregates of misfolded proteins. The mammalian prion, PrP(Sc), causes fatal neurodegenerative disorders. Fungi also have prions. While yeast prions depend upon glutamine/asparagine (Q/N)-rich regions, the Podospora anserina HET-s and PrP prion proteins lack such sequences. Nonetheless, we show that the HET-s prion domain fused to GFP propagates as a prion in yeast. Analogously to native yeast prions, transient overexpression of the HET-s fusion induces ring-like aggregates that propagate in daughter cells as cytoplasmically inherited, detergent-resistant dot aggregates. Efficient dot propagation, but not ring formation, is dependent upon the Hsp104 chaperone. The yeast prion [PIN(+)] enhances HET-s ring formation, suggesting that prions with and without Q/N-rich regions interact. Finally, HET-s aggregates propagated in yeast are infectious when introduced into Podospora. Taken together, these results demonstrate prion propagation in a truly foreign host. Since yeast can host non-Q/N-rich prions, such native yeast prions may exist.  相似文献   

18.
The [URE3] and [PSI(+)] prions are infectious amyloid forms of Ure2p and Sup35p. Several chaperones influence prion propagation: Hsp104p overproduction destabilizes [PSI(+)], whereas [URE3] is sensitive to excess of Ssa1p or Ydj1p. Here, we show that overproduction of the chaperone, Sse1p, can efficiently cure [URE3]. Sse1p and Fes1p are nucleotide exchange factors for Ssa1p. Interestingly, deletion of either SSE1 or FES1 completely blocked [URE3] propagation. In addition, deletion of SSE1 also interfered with [PSI(+)] propagation.  相似文献   

19.
Summary [URE3], a non-mitochondrial non-mendelian mutation which modifies drastically yeast nitrogen metabolism has been genetically studied. Cytoduction experiments show definitely that the inheritance of the determinant is not linked to the nucleus. The maintenance of the [URE3] determinant seems controlled by the product of a conventional nuclear gene (ure2) which is itself involved in nitrogen metabolism. The (ure2) mutation alone gives the same phenotype as [URE3] but it is impossible to obtain a stable recombinant containing simultaneously the (ure2) mutation and the [URE3] determinant. Application of the Newcombe respreading experiment demonstrates that the [URE3] mutational event occurs before the selection procedure and is therefore not strictly adaptative. Nevertheless, the nature of the selection medium changes considerably the frequency of the [URE3] mutants recovered.  相似文献   

20.
Hese K  Otto C  Routier FH  Lehle L 《Glycobiology》2009,19(2):160-171
The key step of protein N-glycosylation is catalyzed by the multimeric oligosaccharyltransferase complex (OST). Biochemical and genetic studies have revealed that OST from Saccharomyces cerevisiae consists of nine subunits: Wbp1, Swp1, Stt3, Ost1, Ost2, Ost3, Ost4, Ost5, and Ost6. With the exception of Stt3, assumed to contain the catalytic site, little is known about the function of other OST subunits. The existence of the OST complex is suggested to allow substrate specificity and efficient transfer, a close interaction with the translocon and the prevention of protein folding to ensure the efficient co-translational modification of proteins. However, in the recently completed genome of the trypanosomatid parasite Leishmania major STT3 (of which four paralogs exist, STT3-1, STT3-2, STT3-3, and STT3-4) is the only OST subunit that can be identified. Here we report that L.m.STT3 proteins, except STT3-3, are able to complement stt3 deficiency in yeast during vegetative growth, but only poorly during sporulation. By blue native electrophoresis we demonstrate that the L.mSTT3 is active mainly as a free, monomeric enzyme. In cell-free assays and also in vivo we find that L.mSTT3, expressed in yeast, has a broad specificity for nonglucosylated lipid-linked mannose-oligosaccharides, typical for several protists. But when incorporated into the OST complex, L.mSTT3 transfers also the common eukaryotic Glc(3)Man(9)GlcNAc(2)-PP-Dol donor. Finally, three L.m.STT3 paralogs were shown to complement not only stt3 but also ost1, ost2, wbp1, or swp1 mutants. Thus, STT3 from Leishmania can substitute for the whole OST complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号