首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wilms' tumors, or nephroblastomas, are renal embryonal malignancies with a high incidence in humans. Nephroblastomas are uncommon in nonhuman primates. This report describes three cases of spontaneous proliferative renal tumors in young monkeys: two cases of unilateral kidney nephroblastomas in baboons and a nephroblastomatosis in a cynomolgus macaque. Histologically, both baboon tumors were typical of Wilms' tumors found in humans, with proliferative epithelial cells forming tubules and aborted glomeruli, nephrogenic rests and proliferative fibrovascular tissue. The left kidney of the macaque was markedly enlarged and histologically similar to the baboon tumors, although normal kidney architecture was completely effaced by primitive tubules and occasional glomeruli surrounded by edematous stromal tissue. Cytogenetic analysis did not detect any macaque or baboon equivalents to human Wilms' tumor chromosomal abnormalities. By human pathology classification, the diffuse nature of the macaque tumor is more consistent with nephroblastomatosis than nephroblastoma. This differentiation is the first to be reported in a species other than human. The nephroblastomas described here are the first nephroblastomas to be reported in baboons. Our observations indicate that nonhuman primate nephroblastomatosis and nephroblastomas develop in a similar way to Wilms' tumors in humans, although no genetic marker has been associated with nephroblastomas of nonhuman primates thus far.  相似文献   

2.
3.
The cloning and molecular characterization of two putative tumor genes, WT1 and WIT1, from the chromosome 11p13 region has provided a means of evaluating their role in the generation of Wilms' tumor heterogeneity. A series of 29 tumors were analyzed for WT1 and WIT1 expression by Northern blot or RNase protection analyses, and results were compared with tumor histopathology. Tumors were scored for the percentage of mesenchymal and epithelial derived tissue components. Homotypic tumors comprised blastema, tubular epithelium, and a fibroblast-like mesenchyme. In addition to these tissue components, the group of tumors designated as heterotypic also contained ectopic cell phenotypes such as muscle and squamous epithelium. The analyses suggest that heterotypic differentiation patterns occur when WT1 and WIT1 expression is low relative to normal fetal kidney. In situ hybridization using antisense RNA probes showed that WT1 and WIT1 were concordantly expressed in normal fetal kidney and in the blastema of tumors. The ratio of WT1:WIT1 expression remained relatively constant in homotypic tumors but deviated significantly in heterotypic tumors. These results suggest that expression patterns of the WT1 and WIT1 genes can be closely correlated to Wilms' tumor histopathology.  相似文献   

4.
To investigate the function of Wilms' tumor 1 (WT1) during spermatogenesis, cDNA for newt WT1 homolog was cloned and the expression of WT1 in newt testes was examined. The cDNA is 2089 bp in length and encodes 426 amino acid (aa) residues. The deduced aa sequence shares 76 and 79% homology with human and Xenopus WT1, respectively. Northern blot analysis shows that WT1 mRNA, 3.2 and 4.5kb in length, are expressed in the testis and kidney. Both WT1 mRNA species are detected in various stages of spermatogenesis, but the 3.2kb mRNA is highly expressed in spermatogonia and mature sperm stages, while the amount of 4.5kb mRNA is almost constant throughout spermatogenesis. In situ hybridization reveals that WT1 mRNA is localized in Sertoli cells. Moreover, immunohistochemical analysis shows that WT1 protein is highly expressed in the nuclei of Sertoli cells in early spermatogonia and mature sperm stages, but not in pericystic cells or germ cells. These results suggest that WT1 is involved in the regulation of gene expression in Sertoli cells, depending on the spermatogenic stage.  相似文献   

5.
Denys-Drash syndrome is a rare human condition in which severe urogenital aberrations result in renal failure, pseudohermaphroditism, and Wilms' tumor (nephroblastoma). To investigate its possible role, we have analyzed the coding exons of the Wilms' tumor suppressor gene (WT1) for germline mutations. In ten independent cases of Denys-Drash syndrome, point mutations in the zinc finger domains of one WT1 gene copy were found. Nine of these mutations are found within exon 9 (zinc finger III); the remaining mutation is in exon 8 (zinc finger II). These mutations directly affect DNA sequence recognition. In two families analyzed, the mutations were shown to arise de novo. Wilms' tumors from three individuals and one juvenile granulosa cell tumor demonstrate reduction to homozygosity for the mutated WT1 allele. Our results provide evidence of a direct role for WT1 in Denys-Drash syndrome and thus urogenital system development.  相似文献   

6.
7.
Expression of the PAX2 gene in human fetal kidney and Wilms' tumor.   总被引:8,自引:0,他引:8  
We have examined the pattern of expression of the human PAX2 gene in Wilms' tumors and human fetal kidney by Northern blot and in situ hybridization. Human PAX2 encodes a paired box-containing protein and has a high degree of homology with mouse and Drosophila paired box genes. In situ hybridization analysis reveals that PAX2 is expressed in nephrogenic structures in fetal kidney and also in Wilms' tumors. This pattern of expression suggests that PAX2 may have a role in differentiation of tissues in the kidney. In fetal kidney, PAX2 expression rapidly attenuates following the initial differentiation, but no evidence of attenuation was found in Wilms' tumors. The timing of PAX2 expression is restricted to fetal development, although high levels of expression were also observed in nephrogenic rests of residual normal juvenile kidney tissue adjacent to a Wilms' tumor. Nephrogenic rests are the presumptive precursors of Wilms' tumor but are not necessarily neoplastic. The failure of PAX2 expression to attenuate in Wilms' tumors and nephrogenic rests may be associated with events leading to the onset of Wilms' tumor. By somatic cell hybrid mapping, the PAX2 gene was localized to chromosome 10q22.1-q24.3, although this region has not previously been implicated in Wilms' tumor.  相似文献   

8.
9.
Summary We report the presence of an extra chromosomal element in a family with Wilms' tumor (WT). This family has three children, two of whom were affected. One son, the proband, had bilateral and one daughter had unilateral WT. The first child, the father, and the mother did not have WT. The son with bilateral WT had a ring chromosome (R) both in the lymphocytes as well as in the kidney tissue. The size of the ring varied considerably from cell to cell. The daughter with unilateral WT had an abnormal clone containing a small chromosomal ring (r) in phytohemagglutinin (PHA)-stimulated and Epstein-Barr virus (EBV)-transformed lymphocytes. The mother had a karyotype similar to that of the daughter with WT. We hypothesize that the proband's ring chromosome could be the amplified form of the r inherited from the mother. Chromosome 11 was cytogenetically normal in all the cells examined of the affected children and the unaffected mother. In situ hybridization with a centromere-specific DNA cocktail indicated dispersed centromeric DNA both in r and R.  相似文献   

10.
A human aniridia candidate (AN) gene on chromosome 11p13 has been cloned and characterized. The AN gene is the second cloned gene of the contiguous genes syndrome WAGR (Wilms' tumor, aniridia, genitourinary malformations, mental retardation) on chromosome 11p13, WT1 being the first gene cloned. Knowledge about the position of the AN and WT1 genes on the map of 11p13 makes the risk assessment for Wilms' tumor development in AN patients possible. In this study, we analyzed familial and sporadic aniridia patients for deletions in 11p13 by cytogenetic analyses, in situ hybridization, and pulsed field gel electrophoresis (PFGE). Cytogenetically visible deletions were found in 3/11 sporadic AN cases and in one AN/WT patient, and submicroscopic deletions were identified in two sporadic AN/WT patients and in 1/9 AN families. The exact extent of the deletions was determined with PFGE and, as a result, we could delineate the risk for Wilms' tumor development. Future analyses of specific deletion endpoints in individual AN cases with the 11p13 deletion should result in a more precise risk assessment for these patients.  相似文献   

11.
We have investigated the regulation of the insulin-like growth factor I receptor (IGF-I-R) gene promoter by the Wilms' tumor suppressor WT1 in intact cells. The levels of endogenous IGF-I-R mRNA and the activity of IGF-I-R gene promoter fragments in luciferase reporter constructs were found to be significantly higher in G401 cells (a Wilms' tumor-derived cell line lacking detectable WT1 mRNA) than in 293 cells (a human embryonic kidney cell line which expresses significant levels of WT1 mRNA). To study whether WT1 could suppress the expression of the endogenous IGF-I-R gene, WT1-negative G401 cells were stably transfected with a WT1 expression vector. Expression of WT1 mRNA in G401 cells resulted in a significant decrease in the rate of cellular proliferation, which was associated with a reduction in the levels of IGF-I-R mRNA, promoter activity, and ligand binding and with a reduction in IGF-I-stimulated cellular proliferation, thymidine incorporation, and anchorage-independent growth. These data suggest that a major aspect of the action of the WT1 tumor suppressor is the repression of IGF-I-R gene expression.  相似文献   

12.
Ancient and recent duplications of the rainbow trout Wilms' tumor gene.   总被引:4,自引:0,他引:4  
The Wilms' tumor suppressor (WT1) gene plays an important role in the development and functioning of the genitourinary system, and mutations in this gene are associated with nephroblastoma formation in humans. Rainbow trout (Oncorhynchus mykiss) is one of the rare animal models that readily form nephroblastomas, yet trout express three distinct WT1 genes, one of which is duplicated and inherited tetrasomically. Sequence analyses suggest an ancient gene duplication in the common ancestor of bony fishes resulted in the formation of two WT1 gene families, that conserve the splicing variations of tetrapod WT1, and a second duplication event occurred in the trout lineage. The WT1 genes of one family map to linkage groups 6 and 27 in the trout genome map. Reverse transcribed polymerase chain reaction (RT-PCR) expression analysis demonstrated little difference in W  相似文献   

13.
We studied the expression of the N-myc proto-oncogene and the insulin-like growth factor-II (IGF-II) gene in human fetuses of 16-19 gestational wk. Both genes have specific roles in the growth and differentiation of embryonic tissues, such as the kidney and neural tissue. Since continued expression of N-myc and IGF-II mRNAs is also a characteristic feature of Wilms' tumor, a childhood neoplasm of probable fetal kidney origin, we were particularly interested in the possibility that their expression might be linked or coordinately regulated in the developing kidney. Expression of N-myc mRNA was observed in the brain and in the kidney by Northern hybridization analysis. In in situ hybridization of the kidney, N-myc autoradiographic grains were primarily located over epithelially differentiating mesenchyme while most of the mesenchymal stromal cells showed only a background signal with the N-myc probe. N-myc mRNA was detectable throughout the developing brain with a slight accentuation in the intermediate zone cells in between the subependymal and cortical layers. Thus, even postmitotic neuroepithelial cells of the fetal cerebrum expressed N-myc mRNA. In Northern hybridization, IGF-II mRNA signal was abundant in the kidney but much weaker, though definite, in the brain. The regional distribution of IGF-II mRNA in the kidney was largely complementary to that of N-myc. IGF-II autoradiographic grains were located predominantly over the stromal and blastemal cells with a relative lack of hybridization over the epithelial structures. In the brain, IGF-II mRNA was about two- to threefold more abundant in the subependymal and intermediate layers than in the cortical plate and ependymal zone, respectively. The fetal expression patterns of the N-myc and IGF-II mRNAs are reflected by the types of tumors known to express the corresponding genes during postnatal life such as Wilms' tumor. However, the apparent coexpression of the IGF-II and N-myc genes in immature kidneys occurs largely in distinct cell types.  相似文献   

14.
15.
16.
17.
18.
19.
The Wilms' tumour suppressor protein, WT1, is a zinc finger protein essential for the development of several organs, including the kidney and gonads. In each of these tissues WT1 is required at multiple stages of development and its persistent expression in podocytes and Sertoli cells suggests WT1 may also have a role in the maintenance of kidney and testis function throughout adult life. Naturally occurring isoforms of WT1 are generated by alternative mRNA splicing. An altered ratio of the splice isoforms WT1-KTS and WT1 + KTS appears to be sufficient to account for the developmental abnormalities (pseudohermaphroditism and nephropathy) characteristic of Frasier syndrome. We show that mice with a transgene encoding WT1-KTS do not differ from their wild-type littermates unless they are also heterozygous for a null mutation at the endogenous Wt1 locus. Animals with both genetic modifications develop proteinuria, together with multiple glomerular cysts, and male infertility. These pathologic changes may be explained as a consequence of altering the WT1 isoform ratio in tissues that express WT1 during adulthood. The results suggest WT1 misexpression could contribute to human glomerulocystic kidney disease.  相似文献   

20.
We have recently described the isolation of a candidate for the Wilms' tumor susceptibility gene mapping to band p13 of human chromosome 11. This gene, primarily expressed in fetal kidney, appears to encode a DNA binding protein. We now describe a sporadic, unilateral Wilms' tumor in which one allele of this gene contains a 25 bp deletion spanning an exon-intron junction and leading to aberrant mRNA splicing and loss of one of the four zinc finger consensus domains in the protein. The mutation is absent in the affected individual's germline, consistent with the somatic inactivation of a tumor suppressor gene. In addition to this intragenic deletion affecting one allele, loss of heterozygosity at loci along the entire chromosome 11 points to an earlier chromosomal nondisjunction and reduplication. We conclude that inactivation of this gene, which we call WT1, is part of a series of events leading to the development of Wilms' tumor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号