首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
All three HLA class II families (DR, DQ, and DP) are involved in restriction of helper T cell (Th) recognition of nominal antigens including CMV. Only limited studies have been described previously to determine whether restricting determinants of DR and especially DQ are subtypic to the serologically defined DR and DQ specificities, and to what extent restricting determinants are associated with Dw specificities defined in alloresponses. In the present report, we describe a large number of CMV-specific Th clones derived from two different individuals who are seropositive for CMV. Clones were classified as being DR-, DQ-, or DP-reactive based on blocking with monoclonal antibodies. DR- and DQ-restricted clones were then examined in panel studies using antigen-presenting cells (APC) expressing the Dw subtype of the restricting DR-DQ haplotype, as well as APC expressing different Dw subtypes associated with the serologically defined specificity. Unrelated specificities were also included. Our findings show that not only for DR but for DQ as well, the primary restricting determinants appear to be subtypic to the serologically defined antigen; furthermore, subtype restriction for both DR and DQ is very closely associated with single Dw specificities. In several cases in which cross-reactivity among restricting Dw specificities was observed in association with a given DR or DQ haplotype, a molecular basis could be suggested to explain the cross-reacting determinants. A small minority of the clones appeared to be CMV specific, but was restricted by a determinant(s) that is either monomorphic or minimally polymorphic.  相似文献   

3.
HLA-DQ molecules form alpha-beta heterodimers of mixed allotype   总被引:5,自引:0,他引:5  
Retroviral vectors with an internal cytomegalovirus major immediate-early gene enhancer/promoter regulating HLA class II gene expression were used to transfer HLA cDNA into human EBV-transformed B-lymphoblastoid cell lines. HLA-DQ2 beta and DQ3.2 beta cDNA were transferred into DQ3.2 and DQ2 homozygous lymphoblastoid cell lines, respectively. Serologic analysis of the infected cell lines with allospecific mAb demonstrated surface expression of these exogenous DQ molecules implying that DQ alpha-chains from DR3, DQ2-positive cells can pair with DQ3.2 beta-chains and, similarly, DQ alpha-chains from DR4, DQ3.2-positive cells can pair with DQ2 beta-chains. Immunoprecipitation of the introduced DQ3.2 beta molecule resulted in co-purification of the allotype-mismatched endogenous DQ2 alpha polypeptide. We also show that vectors with a cytomegalovirus major immediate-early gene enhancer/promoter result in higher levels of expression of the transduced gene compared to previously described HLA vectors with either the SV-40 early enhancer/promoter or the lymphotropic papovavirus-enhanced SV-40 promoter. Although deletion of HLA cDNA did sometimes occur in the process of generating virus-producing clones, the HLA cDNA is stably maintained in virus-producing clones, once it is generated. This retroviral expression system is a highly efficient way to study HLA gene function.  相似文献   

4.
The chimpanzee (Pan troglodytes, Patr) is the closest zoological living relative of humans and shares approximately 98.6% genetic homology to human beings. Although major histocompatibility complex (MHC) plays a critical role in T cell-mediated immune responses in vertebrates, the information on Patr MHC remains at a relatively poor level. Therefore, we attempted to isolate Patr MHC class II genes and determine their nucleotide sequences. The cDNAs encoding Patr MHC class II DP, DQ and DR beta chains were isolated from the cDNA library of a chimpanzee B lymphocyte cell line Bch261. As a result of screening, the clone 6-3-1 as a representative of Patr DP clone, clone 30-1 as a Patr DQ clone, and clones 4-7-1 and 55-1 having different sequences as Patr DR clones were detected. The clone 6-3-1 consisted of 1,062 nucleotides including an open reading frame (ORF) of 777 bp. In the same way, clone 30-1 consisted of 1,172 nucleotides including ORF of 786 bp, clones 4-7-1 and 55-1 consisted of 1,163 nucleotides including ORF of 801 bp. Except for five nucleotide changes, clones 4-7-1 and 55-1 were the same sequence. By comparison with the nucleotide sequences already reported on chimpanzee MHC class II beta 1 genes, clones 6-3-1, 30-1, 4-7-1 and 55-1 were classified as PatrDPB1*16, PatrDQB1*0302, PatrDRB1*0201 and PatrDRB1*0204, respectively. This is the first report to describe complete cDNA sequences of Patr DP and DQ molecules. The nucleotide sequence data of Patr MHC class II genes obtained in this study will be useful for the genotyping of Patr MHC class II genes in individual chimpanzees.  相似文献   

5.
The three HLA class II alleles of the DR2 haplotype, DRB1*1501, DRB5*0101, and DQB1*0602, are in strong linkage disequilibrium and confer most of the genetic risk to multiple sclerosis. Functional redundancy in Ag presentation by these class II molecules would allow recognition by a single TCR of identical peptides with the different restriction elements, facilitating T cell activation and providing one explanation how a disease-associated HLA haplotype could be linked to a CD4+ T cell-mediated autoimmune disease. Using combinatorial peptide libraries and B cell lines expressing single HLA-DR/DQ molecules, we show that two of five in vivo-expanded and likely disease-relevant, cross-reactive cerebrospinal fluid-infiltrating T cell clones use multiple disease-associated HLA class II molecules as restriction elements. One of these T cell clones recognizes >30 identical foreign and human peptides using all DR and DQ molecules of the multiple sclerosis-associated DR2 haplotype. A T cell signaling machinery tuned for efficient responses to weak ligands together with structural features of the TCR-HLA/peptide complex result in this promiscuous HLA class II restriction.  相似文献   

6.
Molecular evidence has been obtained for a novel monomorphic HLA class II molecule distinct from HLA-DP/DQ/DR using a panel of lymphoblastoid cells which include HLA-loss mutants. The expression of this molecule was investigated using monomorphic affinity-purified mouse monoclonal antibodies (mAbs), including one of the IgG2a subclass designated EDUA. This antibody reacts strongly in a cell-binding radioimmunoassay with HLA-DR and -DQ loss mutants derived from a lymphoblastoid parental cell. The EDU-1 mAb also reacted with a local panel of homozygous Epstein-Barr virus-transformed cell lines. The reactive molecules were further detected on allostimulated T-cell clones and various leukemic cells including those of myeloid origin which lack surface expression of HLA-DQ molecules. Thus the class II molecule described in this study corresponds to a monomorphic HLA class II determinant expressed on a variety of cells of different origin and HLA phenotypes. Moreover, this antigen structure is distinct from that of HLA-DP/DQ/DR as shown by direct immunoprecipitation, serial immunodepletion experiments, and two-dimensional gel electrophoresis. The molecule could be specified by new class II genes between DP and DQ. An alternative explanation for the genetic basis of the novel molecule is the existence of isotypic associations between alpha and beta chains of various class II molecules (DP, DX, DZ, and DO) but not DR and DQ as the mutant cells tested lack the latter genes.  相似文献   

7.
From a human cDNA library constructed from a consanguineous HLA-homozygous cell line, AKIBA (HLA-A24, Bw52, DR2, Dw12, DQw1, and Cp63) (Cp63, a new SB type), a cDNA clone encoding a new HLA class II antigen heavy chain named DQ alpha was isolated, and was analyzed by Southern blot hybridization and by nucleotide sequence determination. The nucleotide sequence of the DO alpha cDNA was distinct from those of the DR alpha, the DQ alpha, and the DP alpha cDNA, but showed some characteristic features of the class II antigen alpha-chains. We also isolated and identified genomic clones specifying the DO alpha gene. Genomic analyses of cell lines with different HLA-DR serotypes with the use of the DO alpha cDNA as a probe indicated the existence of a single DO alpha gene that exhibited little restriction enzyme polymorphism.  相似文献   

8.
HLA DR3 is an MHC molecule that reportedly predisposes humans to myasthenia gravis (MG). Though MG is an Ab-mediated autoimmune disease, CD4+ T cells are essential for the generation of high-affinity Abs; hence the specificities of autoreactive CD4+ T cells are important. In this study we report the HLA DR3-restricted T cell determinants on the extracellular region sequence of human acetylcholine receptor alpha subunit. We find two promiscuous determinants on this region 141-160 and 171-190 as defined by their immunogenicity in HLA DR3-, HLA DQ8-, and HLA DQ6-transgenic mice in the absence of endogenous mouse class II molecules. We also studied the minimal determinants of these two regions by truncation analysis, and the MHC binding affinity of a set of overlapping peptides spanning the complete sequence region of human acetylcholine receptor alpha subunit. One of the peptide sequences strongly immunogenic in HLA DR3-transgenic mice also had the highest binding affinity to HLA DR3. Identification of T cell determinants restricted to an MHC molecule known to predispose to MG may be an important step toward the development of peptide-based immunomodulation strategies for this autoimmune disease.  相似文献   

9.
MHC class II haplotypes control the specificity of Th immune responses and susceptibility to many autoimmune diseases. Understanding the role of HLA class II haplotypes in immunity is hampered by the lack of animal models expressing these genes as authentic cis-haplotypes. In this study we describe transgenic expression of the autoimmune prone HLA DR3-DQ2 haplotype from a yeast artificial chromosome (YAC) containing an intact similar320-kb region from HLA DRA to DQB2. In YAC-transgenic mice HLA DR and DQ gene products were expressed on B cells, macrophages, and dendritic cells, but not on T cells indicating cell-specific regulation. Positive selection of the CD4 compartment by human class II molecules was 67% efficient in YAC-homozygous mice lacking endogenous class II molecules (Abeta(null/null)) and expressing only murine CD4. A broad range of TCR Vbeta families was used in the peripheral T cell repertoire, which was also purged of Vbeta5-, Vbeta11-, and Vbeta12-bearing T cells by endogenous mouse mammary tumor virus-encoded superantigens. Expression of the HLA DR3-DQ2 haplotype on the Abeta(null/null) background was associated with normal CD8-dependent clearance of virus from influenza-infected mice and development of CD4-dependent protection from otherwise lethal infection with Salmonella typhimurium. HLA DR- and DQ-restricted T cell responses were also elicited following immunization with known T cell determinants presented by these molecules. These findings demonstrate the potential for human MHC class II haplotypes to function efficiently in transgenic mice and should provide valuable tools for developing humanized models of MHC-associated autoimmune diseases.  相似文献   

10.
The HLA-D region of the human major histocompatibility complex encodes the genes for the alpha and beta chains of the DP, DQ and DR class II antigens. A cDNA clone encoding a new class II beta chain (designated DO) was isolated from a library constructed from mRNA of a mutant B-cell line having a single HLA haplotype. Complete cDNA clones encoding the four isotypic beta chains of the DR1, DQw1, DPw2 and putative DO antigens were sequenced. The DO beta gene was mapped in the D region by hybridization with DNA of HLA-deletion mutants. DO beta mRNA expression is low in B-cell lines but remains in mutant lines which have lost expression of other class II genes. Unlike other class II genes DO beta is not induced by gamma-interferon in fibroblast lines. The DO beta gene is distinct from the DP beta, DQ beta and DR beta genes in its pattern of nucleotide divergence. The independent evolution and expression of DO beta suggest that it may be part of a functionally distinct class II molecule.  相似文献   

11.
This study has shown for the first time an association between the metastatic properties of two autologous melanoma cell lines and their susceptibility to induction of HLA class II Ag by IFN-gamma. After in vitro incubation with IFN-gamma the melanoma cell line MeWo did not acquire reactivity with anti-HLA class II antibodies, whereas its metastatic variant MeM 50-10 did. The differential susceptibility to induction of HLA class II Ag on the two cell lines cannot be accounted for by either differences in the number and affinity of IFN-gamma receptors or in the sensitivity to IFN-gamma, but most likely reflects an intrinsic property of each cell line. Serologic and immunochemical investigations with anti HLA-DR, DQ, and DP mAb have indicated that only HLA-DR Ag are induced by IFN-gamma on MeM 50-10 cells. Northern blot analysis with HLA-DR beta, DQ beta, and DP beta probes suggest that different mechanisms underlie the differential susceptibility to induction by IFN-gamma of the gene products of the HLA-D region. The regulatory mechanism(s) that control the expression of HLA class II Ag appear to be different from those controlling the expression of the melanoma-associated Ag tested, inasmuch as the modulation of the latter by IFN-gamma did not differ on the two melanoma cell lines.  相似文献   

12.
Frozen sections of human fetal spleen from 12 to 20 wk gestation were examined by using polyclonal antibodies to Ig isotypes, monoclonal antibodies to HLA class II subregion locus products, B and T cells, and follicular dendritic cells. Scattered lymphoid cells in spleen sections from fetuses of 12 to 13 wk gestational age expressed IgM but not IgD. The appearance of lymphoid cells expressing IgD occurred at 14 to 15 wk before the formation of loose clusters of B cells at 16 wk. IgD expression was associated mainly with cells in these clusters, which by 17 wk had become definite follicles. Follicular dendritic cells were not detectable until 20 wk. OKT3-positive T cells were not detected until 17 wk, and at 20 wk constituted 5% of the nucleated cell population. HLA-DR- and DP-positive lymphocytes and macrophages were detectable in fetal spleen from 12 wk onward; DR was expressed on more cells than DP, and the numbers of cells stained by HLA-DR-specific monoclonal antibodies exceeded the number of Ig-positive cells in all spleens examined. HLA-DQ was expressed by consistently fewer cells than HLA-DR and -DP in all spleens tested. The small number of DQ-positive cells in spleens from 12- to 13-wk fetuses had the morphology of macrophages; HLA-DQ expression by lymphoid cells followed a similar pattern to IgD expression and was associated mainly with follicular lymphocytes. It could be demonstrated by double-labeling experiments that all follicular IgM-positive cells in 17- to 20-wk spleens expressed HLA-DP, DQ, and DR antigens: IgM-positive cells in 12- to 16-wk spleens and interfollicular IgM-positive cells in 17- to 20-wk spleens all expressed HLA-DR, but only 59% and 43% expressed DP and DQ, respectively. Ninety-one to 100% of IgD-positive cells in all spleens examined expressed HLA-DQ in addition to DR and DP. In these experiments IgD-negative, DQ-positive cells had the morphologic appearance characteristic of macrophages. These data suggest that class II antigens are differentially expressed on developing lymphoid cells; DR and DP expression occurring in the earliest spleens examined, with expression of DP on a subpopulation of DR-positive cells; IgD and DQ expression appears to be coincident on maturing B cells as they begin to form follicles. An immunoregulatory role for HLA-DQ in B cell development is implicated and remains to be fully investigated.  相似文献   

13.
In this study, we show that an HLA-loss variant, EBV-LCL .180, which lacks HLA-DR, DP, DQ and B determinants but expresses HLA-A and C molecules, can activate autologous proliferative T cells which recognize EBV-LCL antigens (or LYDMA). T-cell clones isolated from bulk culture (A.180) of T cell primed with autologous variant .180 when tested for their proliferative reactivity to .180 and three autologous class I-loss variants, each lacking specific class I determinants, showed requirement for class I HLA molecules. Clones A.180.Cl and A.180.F3D respond to the A2+, B-null, C+ mutant .53, but not to the A-null, B5+, C+ mutant .144, or the A-null, B-null, C+ mutant .184, indicating that these clones are restricted by an HLA-A2 determinant. These proliferative T-cell clones express the CD4 marker and are noncytotoxic, even in the presence of concanavalin A (Con A) lectin. In coculture experiments, A.180.Cl was further shown to provide lymphokine "help" for EBV-LCL-specific, autologous cytotoxic T-cell clones. These results suggest the repertoire of HLA determinants employed by EBV-LCL-specific proliferative T cells, in addition to the previously shown HLA-DR, DP, and DQ determinants, also includes class I molecules.  相似文献   

14.
BACKGROUND: The HLA gene complex encodes three class II isotypes, DR, DQ, and DP. HLA class II molecules are peptide receptors that present antigens for recognition by T lymphocytes. In antigen presenting cells, the assembly of matched α and β subunits to heterodimers is chaperoned by invariant chain (Ii). Ii forms a homotrimer with three binding sites for class II heterodimers. The current model of class II and Ii structure states that three αβ heterodimers bind to an Ii trimer. METHOLOGY/PRINCIPAL FINDINGS: We have now analyzed the composition and size of the complexes of class II and Ii using epitope tagged class II subunits and density gradient experiments. We show here that class II-Ii oligomers consist of one class II heterodimer associated with one Ii trimer, such that the DR, DQ and DP isotypes are contained within separate complexes with Ii. CONCLUSION/SIGNIFICANCE: We propose a structural model of the class II-Ii oligomer and speculate that the pentameric class II-Ii complex is bent towards the cell membrane, inhibiting the binding of additional class II heterodimers to Ii.  相似文献   

15.
Peripheral blood monocytes from up to 13 normal donors were stimulated with the cytokines interferon gamma (IFN-gamma), interleukin 4 (IL-4) and granulocyte macrophage-colony stimulating factor (GM-CSF) in the presence or absence of dexamethasone (Dex), and the effects on HLA class II (HLA-DR, DP and DQ) expression studied. Dex markedly augmented HLA-DR, DP and DQ levels induced by GM-CSF, in all samples tested. Particularly striking were the effects on HLA-DQ expression, since stimulation with a combination of Dex and GM-CSF induced markedly higher levels of HLA-DQ antigen than stimulation with IFN-gamma. Northern blot analysis of samples treated for 40 hours with Dex and GM-CSF indicated that levels of DR alpha, DP alpha and DQ alpha mRNA were also increased. In contrast, despite variation between individual donors, in general Dex weakly inhibited both constitutive and IFN-gamma- or IL-4-induced HLA-DR expression. Variability in the responsiveness of monocytes purified from individual donors to each cytokine was also observed. GM-CSF was less potent than IFN-gamma and IL-4, enhancing HLA class II expression in only seven of 13 donors tested, whereas in the presence of Dex all donors responded to GM-CSF. The differential effects of glucocorticoids in vitro suggest that these cytokines induce HLA class II expression by different mechanisms.  相似文献   

16.
Expression of class II antigens by subsets of activated T cells   总被引:1,自引:0,他引:1  
K S Zier 《Cellular immunology》1986,100(2):525-531
Gene products coded for within the HLA complex play an important role in the control of immune responses. Class I antigens, coded for by the HLA-A, B, and C loci, are expressed by virtually all mononuclear blood cells. Class II antigens, coded for by the DR, DQ, and DP loci, have a more limited tissue distribution. They are expressed by B cells, monocytes, and by activated, but not by resting, T cells. The class II molecules of B cells and antigen-presenting cells have long been of interest to immunologists, since they are involved in the presentation of antigen, in communication between T cells and B cells and between T cells and adherent cells, and in susceptibility to certain diseases. The class II antigens expressed by activated T cells, however, remain largely uncharacterized in terms of their specificity, functional significance, and molecular nature. We have studied the expression of DR and DQ antigens by activated T cells and then examined the expression of DR versus DQ antigens by Leu 2a and Leu 3a subsets of mitogen-activated populations. Our results demonstrated that, as for class II-positive macrophages, the intensity of staining with monoclonal antibodies directed against DR antigens was much greater than that obtained with those directed against DQ antigens. Interestingly, the percentages of Leu 2a- and Leu 3a-positive cells which expressed DR antigens were quite similar, as were the percentages of Leu 2a and Leu 3a cells which expressed DQ. Thus, there does not seem to be preferential expression of DR versus DQ antigens by mitogen-activated T-cell subsets. Finally, though both DR-positive-DQ-positive and DR-positive-DQ-negative populations were detected, few or no DR-negative-DQ-positive cells were observed in these populations.  相似文献   

17.
The nucleotide sequence of a complete cDNA gene from a DP4-positive HLA-homozygous cell line, PGF, has been determined. This sequence is identical to the exon sequences in a genomic clone derived from another DP4-positive cell line, Priess. In contrast, our DP cDNA sequence shares only limited homology with partial cDNA sequences obtained from clones of three DP4-negative cell lines. On the basis of these results, we conclude that the phenotypic variation of DP alleles is directly attributable to the nucleotide sequence heterogeneity of DP-beta genes. That is, each phenotypic allelic form of DP antigen corresponds to a distinctly different DP-beta gene. Furthermore, this correspondence is found to be unaffected by the markers present at the DQ and DR loci, since the haplotypes of the PGF and Priess cell lines are, respectively, DR2,DQw1,DP4 and DR4,DQw3,DP4.  相似文献   

18.
Abs to Ro/SSA Ags in the sera of patients with systemic lupus erythematosus and Sj?gren's syndrome are influenced by the HLA class II genes. To investigate the role of individual HLA class II genes in immune responses to human Ro60 (hRo60), mice lacking murine class II molecules and carrying either HLA genes DR2(DRB1*1502), DR3(DRB1*0301), DQ6(DQA1*0103/DQB1*0601), or DQ8(DQA1*0301/DQB1*0302), were immunized with rhRo60. The results show that hRo60 induces strong T and B cell responses in DR2, DR3, and DQ8 mice in comparison to weaker responses in DQ6 mice. In all mice, the majority of the dominant T cell epitopes were located in the amino portion (aa 61-185) and the carboxy portion (aa 381-525) of the hRo60 molecules. In contrast, the early dominant B cell epitopes were located in the middle and carboxy portion of the hRo60 molecule (aa 281-315 and 401-538). In DR2, DR3, and DQ8 mice, the B cell epitopes subsequently spread to the amino and carboxy portion of the hRo60 molecule but were limited to the middle and carboxy portion in DQ6 mice. The DR2 and DR3 mice produced the highest titers of immunoprecipitating Abs against hRo60 and native mouse Ro60. In addition, only DR2 mice exclusively produced immunoprecipitating Abs to native mouse Ro52 and Abs to mouse La by slot blot analysis, whereas in other strains of mice Abs to mouse La were cross-reactive with the immunogen. The results of the present study demonstrate the importance of HLA class II in controlling the immune responses to the Ro-ribonucleoprotein.  相似文献   

19.
The physical association of HLA class I and class II Ag in the membranes of PGF and JY lymphoblastoid cell lines was studied using flow cytometric energy transfer. This technique measures the proximity of cell surface molecules in the nm range and provides a distribution histogram of the average proximity of molecules on each cell of a population. HLA Ag were labeled with mAb conjugated to fluorescein, serving as donor, or tetramethylrhodamine, serving as acceptor molecules. Significant fluorescence energy transfer was detected between various combinations of class I and class II molecules indicating that these molecules are within 10 nanometers of each other. Specifically, energy transfer was observed between class I molecules and DR, DQ, or DP class II HLA molecules. In addition, energy transfer between all combinations of DR, DQ, and DP molecules was observed. No transfer was observed among class I molecules or among DR or among DP molecules. Among DQ molecules, subpopulations transferred fluorescence energy to each other. The close contact measured between class I and class II Ag correlates with previous reports of cocapping and may reflect an immunologically significant interaction or the reported tendency of class I Ag to associate with other cell surface receptors, including growth factor receptors. The energy transfer between fluorescent antibodies to class II Ag suggests the existence of heterodimers formed from the different locus products, as well as possible quaternary surface interactions between alpha/beta complexes from separate loci.  相似文献   

20.
Our epidemiologic studies on invasive Group A Streptococci (GAS) infections identified specific HLA class II haplotypes/alleles conferring high-risk or protection from streptococcal toxic shock syndrome with a strong protection conferred by the DRB1*15/DQB1*06 haplotype. We used HLA-transgenic mice to provide an in vitro and in vivo validation for the direct role of HLA class II allelic variation in streptococcal toxic shock syndrome. When splenocytes from mice expressing the protective HLA-DQB1*06 (DQ6) allele were stimulated with a mixture of streptococcal superantigens (SAgs), secreted by the prevalent M1T1 strain, both proliferative and cytokine responses were significantly lower than those of splenocytes from mice expressing the neutral DRB1*0402/DQB1*0302 (DR4/DQ8) alleles (p < 0.001). In crisscross experiments, the presentation of SAgs to pure T cells from either the DQ6 or the DR4/DQ8 mice resulted in significantly different levels of response depending on the HLA type expressed on the APCs. Presentation by HLA-DQ6 APCs elicited significantly lower responses than the presentation by HLA-DR4/DQ8 APCs. Our in vitro data were supported by in vivo findings, as the DQ6 mice showed significantly longer survival post-i.v. infection with live M1T1 GAS (p < 0.001) and lower inflammatory cytokine responses as compared with the DR4/DQ8 mice (p < 0.01). The data presented here provide evidence for a direct role of HLA class II molecules in modulating responses to GAS SAgs and underscore the dominant role of HLA class II allelic variation in potentiating the severity of GAS systemic infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号