首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 572 毫秒
1.
1. A comparative study was made in man, rhesus monkey, rat and rabbit of the urinary excretion of 2-, 4- and 5-methoxy- and 2,4-, 2,5- and 4,5-dimethoxy-6-sulphanilamidopyrimidines given orally. 2. In the rabbit, 70-80% of the dose of each drug was excreted in 2 days, mainly as N(4)-acetyl derivatives, except 2,5-dimethoxy-6-sulphanilamidopyrimidine, which was mainly excreted unchanged. 3. In the rat, 50-70% of the dose of each drug was excreted in 2 days, except the 2-methoxy and 2,4-dimethoxy compounds, whose excretion was about 30%. The N(4)-acetyl derivatives accounted for 20-70% of the drugs excreted, except the 2,5-dimethoxy derivative, which was excreted unchanged. 4. In the rhesus monkey, some 40-60% of the dose of the 2-methoxy, 2,4-dimethoxy and 2,5-dimethoxy compounds was excreted in 2 days, but the 4-methoxy, 5-methoxy and 4,5-dimethoxy compounds were excreted at less than half this rate. The 4-methoxy, 5-methoxy and 4,5-dimethoxy compounds were highly acetylated (80-90%) whereas the 2-methoxy compound was poorly acetylated (17%) and the 2,5-dimethoxy compound hardly at all. The major metabolite of the 2,4-dimethoxy compound in the monkey was the N(1)-glucuronide. 5. In man, 30% of the dose of the 4-methoxy and 2,4-dimethoxy compounds was excreted in 24 hr., whereas the 4,5-dimethoxy compound (Fanasil) was very slowly excreted (12% in 2 days). The 4-methoxy compound was well acetylated (65%), but the 2,4- and 4,5-dimethoxy compounds were not (20-30%). The main metabolite of the 2,4-dimethoxy compound in man was the N(1)-glucuronide. 6. N(1)-Glucuronide formation occurred extensively only with the 2,4-dimethoxy compound and only in man and the rhesus monkey. It did not occur in the rabbit and only to a minor extent in the rat. 7. The 2,5-dimethoxy compound was not significantly acetylated in vivo in the rabbit, rat or monkey, but acetylation occurred in vitro in rabbit or monkey liver homogenates. 8. These findings are discussed.  相似文献   

2.
1. The metabolism of sulphadimethoxine (2,4-dimethoxy-6-sulphanilamidopyrimidine) was examined in nine species of primates and nine species of non-primates. 2. The main metabolite of the drug in the urine in man, rhesus monkey, baboon, squirrel monkey, capuchin, bushbaby, slow loris and tree shrew was sulphadimethoxine N(1)-glucuronide. In the green monkey, although the main metabolite was N(4)-acetylsulphadimethoxine, the N(1)-glucuronide was also a major metabolite. 3. In the dog, rat, mouse, guinea pig, Indian fruit bat and hen the N(1)-glucuronide was a minor metabolite in the urine, whereas in the cat, ferret and rabbit this glucuronide was not found in the urine. 4. All the species examined except the dog excreted some N(4)-acetylsulphadimethoxine, which was the major metabolite in the green monkey, rabbit and guinea pig. 5. In the tree shrew, a doubtful primate, N(1)-glucuronide formation was similar to that in the other primates. 6. It is suggested that the slow excretion of the drug by the rat may be due partly to strong binding of the drug to tissue proteins and that the strength of binding may vary with species. 7. In the rat the amount of N(1)-glucuronide found in the urine is not a true indication of the extent of this conjugation since much more of the conjugate was found in the bile (7% of the dose) than in the urine (1%). In the rabbit, no N(1)-glucuronide was found in the bile or urine, but a small amount of sulphadimethoxine N(4)-glucuronide was found in the bile of the rat (0.5% of dose) and rabbit (0.8%).  相似文献   

3.
Species differences in the metabolism of sulphadimethoxine   总被引:5,自引:4,他引:1  
1. The fate of sulphadimethoxine (2,4-dimethoxy-6-sulphanilamidopyrimidine) was studied in man, rhesus monkey, dog, rat, guinea pig and rabbit. 2. About 20–46% of the dose (0·1g./kg.) of the drug is excreted in the urine in 24hr. in these species, except the rat, in which only 13% is excreted. 3. In man and the monkey sulphadimethoxine N1-glucuronide is the major metabolite in the urine. In the rabbit and guinea pig N4-acetylsulphadimethoxine is the main metabolite. In the dog the drug is excreted mainly unchanged. In the rat equal amounts of the unchanged drug and its N4-acetyl derivative are the main products. 4. Small amounts of sulphadimethoxine N4-glucuronide are found in the urine of all the species. Sulphadimethoxine N1-glucuronide occurs in small amounts in the urine of rat, dog and guinea pig; none is found in rabbit urine. 5. Sulphadimethoxine N4-sulphate was synthesized and found to occur in small amounts in rat urine. 6. Monkey liver homogenates fortified with UDP-glucuronic acid are able to synthesize sulphadimethoxine N1-glucuronide with the drug as substrate. Rat liver has also this ability to a slight extent, but rabbit liver is unable to do so. 7. Sulphadimethoxine N4-glucuronide is formed spontaneously when the drug is added to human urine. 8. The biliary excretion of the drug and its metabolites was examined in rats. The drug is excreted in rat bile mainly as the N1-glucuronide. The N1- and N4-glucuronides administered as such are extensively excreted in the bile by rats.  相似文献   

4.
The structure of the glucuronide of sulphadimethoxine formed in man   总被引:12,自引:12,他引:0       下载免费PDF全文
1. The major metabolite of 2,4-dimethoxy-6-sulphanilamidopyrimidine (sulphadimethoxine) in urine in man is a non-reducing glucuronide, which has been isolated and characterized as its S-benzylthiouronium salt. 2. The same compound was made synthetically by standard methods from sodium sulphadimethoxine and methyl 2,3,4-tri-O-acetyl-1-bromoglucuronate. 3. On hydrolysis with acid, the glucuronide yielded sulphanilic acid, glucuronic acid and barbituric acid, and with beta-glucuronidase it slowly yielded sulphadimethoxine and glucuronic acid. 4. Evidence based on infrared spectra and other data showed that the urinary and synthetic glucuronide was 1-deoxy-1-[N(1)'-(2',4'-dimethoxypyrimidin-6' -yl)sulphanilamido-beta-d-glucosid]uronic acid or sulphadimethoxine N(1)-glucuronide. 5. N(1)-Methyl- and N(ring)-methyl derivatives of sulphadimethoxine and 4-methoxy-6-sulphanilamidopyrimidine were prepared and their infrared and ultraviolet spectra determined for comparison.  相似文献   

5.
1. The fate of (−)-quinic acid has been investigated in 22 species of animals including man. 2. In man and three species of Old World monkeys, i.e. rhesus monkey, baboon and green monkey, oral quinic acid was extensively aromatized (20–60%) and excreted in the urine as hippuric acid, which was determined fluorimetrically. 3. In three species of New World monkeys, i.e. squirrel monkey, spider monkey and capuchin, in three species of lemurs, i.e. bushbaby, slow loris and tree shrew, in the dog, cat, ferret, rabbit, rat, mouse, guinea pig, hamster, lemming, fruit bat, hedgehog and pigeon, oral quinic acid was not extensively aromatized (0–5%). 4. In the rhesus monkey, injected quinic acid was not aromatized, but largely excreted unchanged. 5. In rhesus monkeys pretreated with neomycin to suppress gut flora, the aromatization of oral quinic acid was considerably suppressed. 6. In rats and rhesus monkeys [14C]quinic acid was used and this confirmed its low aromatization in rats and its high aromatization in the monkeys. 7. Shikimic acid given orally was excreted as hippuric acid (26–56%) in rhesus monkeys, but not in rats. 8. The results support the view that quinic acid and shikimic acid are aromatized by the gut flora in man and the Old World monkeys.  相似文献   

6.
The metabolic fate of amphetamine in man and other species   总被引:7,自引:7,他引:0  
1. The fate of [(14)C]amphetamine in man, rhesus monkey, greyhound, rat, rabbit, mouse and guinea pig has been studied. 2. In three men receiving orally 5mg each (about 0.07mg/kg), about 90% of the (14)C was excreted in the urine in 3-4 days. About 60-65% of the (14)C was excreted in 1 day, 30% as unchanged drug, 21% as total benzoic acid and 3% as 4-hydroxyamphetamine. 3. In two rhesus monkeys (dose 0.66mg/kg), the metabolites excreted in 24h were similar to those in man except that there was little 4-hydroxyamphetamine. 4. In greyhounds receiving 5mg/kg intraperitoneally the metabolites were similar in amount to those in man. 5. Rabbits receiving 10mg/kg orally differed from all other species. They excreted little unchanged amphetamine (4% of dose) and 4-hydroxyamphetamine (6%). They excreted in 24h mainly benzoic acid (total 25%), an acid-labile precursor of 1-phenylpropan-2-one (benzyl methyl ketone) (22%) and conjugated 1-phenylpropan-2-ol (benzylmethylcarbinol) (7%). 6. Rats receiving 10mg/kg orally also differed from other species. The main metabolite (60% of dose) was conjugated 4-hydroxyamphetamine. Minor metabolites were amphetamine (13%), N-acetylamphetamine (2%), norephedrine (0.3%) and 4-hydroxynorephedrine (0.3%). 7. The guinea pig receiving 5mg/kg excreted only benzoic acid and its conjugates (62%) and amphetamine (22%). 8. The mouse receiving 10mg/kg excreted amphetamine (33%), 4-hydroxyamphetamine (14%) and benzoic acid and its conjugates (31%). 9. Experiments on the precursor of 1-phenylpropan-2-one occurring in rabbit urine suggest that it might be the enol sulphate of the ketone. A very small amount of the ketone (1-3%) was also found in human and greyhound urine after acid hydrolysis.  相似文献   

7.
The metabolism of four sulphonamides in cows   总被引:1,自引:0,他引:1       下载免费PDF全文
1. The metabolism of sulphanilamide, sulphadimidine (4,6-dimethyl-2-sulphanilamidopyrimidine), sulphamethoxazole (5-methyl-3-sulphanilamidoisoxazole) and sulphadoxine (5,6-dimethoxy-4-sulphanilamidopyrimidine) given by intravenous injection has been examined in cows. 2. The sulphonamides were present mainly as unchanged drugs in blood samples collected 2h after administration. 3. The sulphonamides were excreted in the milk partly as unchanged drugs and partly as conjugated metabolites whereas only small amounts were excreted as the N(4)-acetyl derivatives. 4. The unchanged drug and the N(4)-acetyl derivative were the major constituents in urine samples after administration of sulphanilamide, sulphamethoxazole and sulphadoxine. 5. Besides the unchanged drug, the N(4)-acetyl derivative and the conjugated metabolites, three further metabolites of sulphadimidine were isolated from urine samples and identified. They were 5-hydroxy-4,6-dimethyl-2-sulphanilamidopyrimidine, 4-hydroxymethyl-6-methyl-2-sulphanilamidopyrimidine and sulphaguanidine.  相似文献   

8.
1. When rats were given a single oral dose of the lipid-soluble fungicide 4-(2-chlorophenylhydrazono)-3-methyl[4-(14)C]isoxazol-5-one ([(14)C]drazoxolon), about 75% of the label was excreted in the urine and 13% in the faeces in 96hr. An additional 7% of the radioactivity was recovered as (14)CO(2) in 48hr. 2. About 8% of the label was excreted by rats in the bile in 0-24hr. and an additional 6% was excreted by the same route in 24-48hr. 3. When dogs were given a single oral dose of [(14)C]drazoxolon about 35% of the label was excreted in the urine and a similar amount was excreted in the faeces in 96hr. 4. The major metabolites in the urine of the rat and the dog were identified as 2-(2-chloro-4-hydroxyphenylhydrazono)acetoacetic acid (dog, 14%), the corresponding ether glucosiduronic acid (dog, 12%; rat, 13%) and ester sulphate (rat, 65%). 5. When rats were given a single oral dose of 3-methyl-4-([U-(14)C]phenylhydrazono)isoxazol-5-one about 75% of the label was excreted in the urine and 15% in the faeces in 96hr. The major metabolite in the urine was identified as the ester sulphate conjugate of 2-(4-hydroxyphenylhydrazono)-acetoacetic acid. 6. Reduction of the azo link was of minor quantitative significance. 7. These results are discussed in their relation to species differences in the toxicity of these compounds.  相似文献   

9.
The fate of benzoic acid in various species   总被引:4,自引:2,他引:2       下载免费PDF全文
1. The urinary excretion of orally administered [14C]benzoic acid in man and 20 other species of animal was examined. 2. At a dose of 50mg/kg, benzoic acid was excreted by the rodents (rat, mouse, guinea pig, golden hamster, steppe lemming and gerbil), the rabbit, the cat and the capuchin monkey almost entirely as hippuric acid (95–100% of 24h excretion). 3. In man at a dose of 1mg/kg and the rhesus monkey at 20mg/kg benzoic acid was excreted entirely as hippuric acid. 4. At 50mg/kg benzoic acid was excreted as hippuric acid to the extent of about 80% of the 24h excretion in the squirrel monkey, pig, dog, ferret, hedgehog and pigeon, the other 20% being found as benzoyl glucuronide and benzoic acid, the latter possibly arising by decomposition of the former. 5. On increasing the dose of benzoic acid to 200mg/kg in the ferret, the proportion of benzoyl glucuronide excreted increased and that of hippuric acid decreased. This did not occur in the rabbit, which excreted 200mg/kg almost entirely as hippuric acid. It appears that the hedgehog and ferret are like the dog in respect to their metabolism of benzoic acid. 6. The Indian fruit bat produced only traces of hippuric acid and possibly has a defect in the glycine conjugation of benzoic acid. The main metabolite in this animal (dose 50mg/kg) was benzoyl glucuronide. 7. The chicken, side-necked turtle and gecko converted benzoic acid mainly into ornithuric acid, but all three species also excreted smaller amounts of hippuric acid.  相似文献   

10.
The metabolites of cyclohexylamine in man and certain animals   总被引:3,自引:3,他引:0  
1. [1-(14)C]Cyclohexylamine hydrochloride was synthesized and given orally or intraperitoneally to rats, rabbits and guinea pigs (dose 50-500mg/kg) and orally to humans (dose 25 or 200mg/person). The (14)C is excreted mainly in the urine, most of the excretion occurring in the first day after dosing. Only small amounts (1-7%) are found in the faeces. 2. In the rat, guinea pig and man, the amine is largely excreted unchanged, only 4-5% of the dose being metabolized in 24h in the rat and guinea pig and 1-2% in man. In the rabbit about two-thirds of the dose is excreted unchanged and about 30% is metabolized. 3. In the rat, five minor metabolites were found, namely cyclohexanol (0.05%), trans-3- (2.2%), cis-4- (1.7%), trans-4- (0.5%) and cis-3-aminocyclohexanol (0.1% of the dose in 24h). 4. In the rabbit, eight metabolites were identified, namely cyclohexanol (9.3%), trans-cyclohexane-1,2-diol (4.7%), cyclohexanone (0.2%), cyclohexylhydroxylamine (0.2%) and trans-3- (11.3%), cis-3- (0.6%), trans-4- (0.4%) and cis-4-aminocyclohexanol (0.2%). 5. In the guinea pig, six minor metabolites were found, namely cyclohexanol (0.5%), trans-cyclohexane-1,2-diol (2.5%) and trans-3- (1.2%), cis-3- (0.2%), trans-4- (0.2%) and cis-4-aminocyclohexanol (0.2%). 6. In man only two metabolites were definitely identified, namely cyclohexanol (0.2%) and trans-cyclohexane-1,2-diol (1.4% of the dose), but man had been given a smaller dose (3mg/kg) than the other species (50mg/kg). 7. The hydroxylated metabolites of cyclohexylamine were excreted in the urine in both free and conjugated forms. 8. Although cyclohexylamine is metabolized to only a minor extent, in rats the metabolism was mainly through hydroxylation of the cyclohexane ring, in man by deamination and in guinea pigs and rabbits by ring hydroxylation and deamination.  相似文献   

11.
1. The biliary excretion of injected [14C]aniline, [14C]benzoic acid, 4-amino-hippuric acid and 4-acetamidohippuric acid in six or eight species of animal (rat, dog, hen, cat, rabbit, guinea pig, rhesus monkey and sheep) was studied. 2. These compounds, with molecular weights in the range 93–236, are poorly excreted in the bile in all the species examined and, in effect, there is little significant species difference in the extent of their biliary excretion. 3. Compounds of higher molecular weight (355–495) were also studied, namely succinylsulphathiazole, [14C]stilboestrol glucuronide, sulphadimethoxine N1-glucuronide and phenolphthalein glucuronide. 4. With these compounds a clear species difference in the extent of biliary excretion was found, the rat, dog and hen being good excretors, the rabbit, guinea pig and monkey poor excretors, and the cat and sheep taking an intermediary position. 5. There was a general trend for biliary excretion to be higher in all species when the compounds were of higher molecular weight. 6. These results are discussed in their relation to species differences in drug metabolism.  相似文献   

12.
Some metabolites of 1-bromobutane in the rabbit and the rat   总被引:2,自引:2,他引:0  
1. Rabbits and rats dosed with 1-bromobutane excrete in urine, in addition to butylmercapturic acid, (2-hydroxybutyl)mercapturic acid, (3-hydroxybutyl)mercapturic acid and 3-(butylthio)lactic acid. 2. Although both species excrete both the hydroxybutylmercapturic acids, only traces of the 2-isomer are excreted by the rabbit. The 3-isomer has been isolated from rabbit urine as the dicyclohexylammonium salt. 3. 3-(Butylthio)lactic acid is formed more readily in the rabbit; only traces are excreted by the rat. 4. Traces of the sulphoxide of butylmercapturic acid have been found in rat urine but not in rabbit urine. 5. In the rabbit about 14% and in the rat about 22% of the dose of 1-bromobutane is excreted in the form of the hydroxymercapturic acids. 6. Slices of rat liver incubated with S-butylcysteine or butylmercapturic acid form both (2-hydroxybutyl)mercapturic acid and (3-hydroxybutyl)mercapturic acid, but only the 3-hydroxy acid is formed by slices of rabbit liver. 7. S-Butylglutathione, S-butylcysteinylglycine and S-butylcysteine are excreted in bile by rats dosed with 1-bromobutane. 8. Rabbits and rats dosed with 1,2-epoxybutane excrete (2-hydroxybutyl)mercapturic acid to the extent of about 4% and 11% of the dose respectively. 9. The following have been synthesized: N-acetyl-S-(2-hydroxybutyl)-l-cysteine [(2-hydroxybutyl)mercapturic acid] and N-acetyl-S-(3-hydroxybutyl)-l-cysteine [(3-hydroxybutyl)mercapturic acid] isolated as dicyclohexylammonium salts, N-toluene-p-sulphonyl-S-(2-hydroxybutyl)-l-cysteine, S-butylglutathione and N-acetyl-S-butylcysteinyl-glycine ethyl ester.  相似文献   

13.
The aim of the present study was to determine the extent to which plasma catecholamines are conjugated in different animals compared to man and how widespread is the presence of dihydroxyphenylalanine (DOPA) and 3-methoxy-4-hydroxyphenylalanine (3-OMD) in plasma among the different animal species. Free and conjugated norepinephrine, epinephrine, and dopamine were measured in plasma in humans and in several animal species (dog, rat, Gunn rat, cat, rabbit, guinea pig, African green monkey, young pig, calf, and one American black bear) using HPLC with electrochemical detection. The same technique was used to measure free and conjugated DOPA and 3-OMD in plasma of man, dog, rat, Gunn rat, calf, and American black bear. Human plasma contains the highest concentration of total (free and conjugated) catecholamines (46.1 pmole/ml), while low concentrations (below 15 pmole/ml) were observed in unstressed rats, calves, cats, and young pigs. In man, 95.3% of total plasma catecholamines were conjugated. The extent to which plasma catecholamines were conjugated varied greatly between animal species. The conjugated fraction expressed as percentages of the total catecholamines is lowest in the young pig (4.7%) and highest in the bear (100%). Conjugated dopamine was present in the plasma of all species, varying between 3% of the total catecholamine pool in young pig to 90% in dog. Conjugated norepinephrine was also present in plasma of all species except in unstressed rats with access to food. Conjugated epinephrine was detected only in cat and rat. Free DOPA and 3-OMD were present in plasma of all tested species with especially high levels of 3-OMD being present in dog. Conjugated DOPA and 3-OMD were not consistently found in any species. Our results indicate that man, dog, bear, and African green monkey are particularly good catecholamine conjugators and that young pig, guinea pig, rabbit, and calf are poor conjugators.  相似文献   

14.
1. The synthesis of gamma-glutamylhydroxamate from glutamate and hydroxylamine has been utilized as an approximation of glutamine synthetase activity in kidneys of rabbit, rat, dog, monkey and man. 2. Kidneys of rabbit contain glutamine synthetase in high activity; those of rat, in intermediate activity; and those of dog, monkey and man, in negligible activity. 3. No more enzyme is present in kidneys of the latter two species than in those of the dog, in which the enzyme is generally considered to be absent.  相似文献   

15.
1. The metabolites of (+/-)-2-methylamino-1-phenyl[1-(14)C]propane ([(14)C]methamphetamine) in urine were examined in man, rat and guinea pig. 2. In two male human subjects receiving the drug orally (20mg per person) about 90% of the (14)C was excreted in the urine in 4 days. The urine of the first day was examined for metabolites, and the main metabolites were the unchanged drug (22% of the dose) and 4-hydroxymethamphetamine (15%). Minor metabolites were hippuric acid, norephedrine, 4-hydroxyamphetamine, 4-hydroxynorephedrine and an acid-labile precursor of benzyl methyl ketone. 3. In the rat some 82% of the dose of (14)C (45mg/kg) was excreted in the urine and 2-3% in the faeces in 3-4 days. In 2 days the main metabolites in the urine were 4-hydroxymethamphetamine (31% of dose), 4-hydroxynorephedrine (16%) and unchanged drug (11%). Minor metabolites were amphetamine, 4-hydroxyamphetamine and benzoic acid. 4. The guinea pig was injected intraperitoneally with the drug at two doses, 10 and 45mg/kg. In both cases nearly 90% of the (14)C was excreted, mainly in the urine after the lower dose, but in the urine (69%) and faeces (18%) after the higher dose. The main metabolites in the guinea pig were benzoic acid and its conjugates. Minor metabolites were unchanged drug, amphetamine, norephedrine, an acid-labile precursor of benzyl methyl ketone and an unknown weakly acidic metabolite. The output of norephedrine was dose-dependent, being about 19% on the higher dose and about 1% on the lower dose. 5. Marked species differences in the metabolism of methamphetamine were observed. The main reaction in the rat was aromatic hydroxylation, in the guinea pig demethylation and deamination, whereas in man much of the drug, possibly one-half, was excreted unchanged.  相似文献   

16.
1. The excretion in the bile and urine after intravenous injection of 16 organic anions having molecular weights between 355 and 752 was studied in female rats, guinea pigs and rabbits. 2. These compounds were mostly excreted unchanged, except for three of them, which were metabolized to a slight extent (<7% of dose). 3. The rat excreted all the compounds extensively (22-90% of dose) in the bile. 4. In guinea pigs four of the compounds with mol.wt. 355-403 were excreted in the bile to the extent of 7-16% of the dose, four with mol.wt. 407-465 to the extent of 25-44% and eight compounds with mol.wt. 479-752 to the extent of 44-100%. 5. In rabbits four compounds with mol.wt. 355-465 were excreted in the bile to the extent of 1-8% of the dose, two compounds with mol.wt. 479 and 495 to the extent of 24 and 22%, and six compounds with mol.wt. 505-752 to the extent of 31-94%. 6. These results, together with those of other investigations from this laboratory, are discussed and the conclusion is reached that there is a threshold molecular weight for appreciable biliary excretion (i.e. more than 10% of dose) of anions, which varies with species: about 325+/-50 for the rat, 400+/-50 for the guinea pig and 475+/-50 for the rabbit. 7. Anions with molecular weights greater than about 500 are extensively excreted in the bile of all three species. 8. That proportion of the dose of these compounds which is not excreted in the bile is excreted in the urine, and in the three species, bile and urine are complementary excretory pathways, urinary excretion being greatest for the compounds of lowest molecular weight and tending to decrease with increasing molecular weight. 9. Some implications of this interspecies variation in the molecular-weight requirement for extensive biliary excretion are discussed.  相似文献   

17.
Methylglucamine is a commonly used cation in radiocontrast media. The present study sheds light on its fate in the rat. When administered intraperitoneally, 93% of the compound was excreted unchanged in the urine in 24 hr. When administered orally, about 15% of the dose was found in the urine, about 40% in the faeces and 20% in expired air in 24 hr. When administered orally to rats whose gut flora had been depleted by treatment with neomycin sulphate, 19% was excreted in the urine, 69% in the faeces and 3% in expired air in 72 hr. This indicated that the gut flora played a role in the degradation of the compound and its eventual loss as expired carbon dioxide.  相似文献   

18.
1. After intravenous injection about 30% of the dose (20mg./kg.) of succinylsulphathiazole is excreted unchanged in the bile in 3hr. by the rat, whereas only about 1% is excreted by the rabbit. When the renal pedicles are ligated the biliary excretion of succinylsulphathiazole in the rat increases to about 80% of the dose, but in the rabbit under these conditions the biliary excretion is only 2% of the dose. 2. In the rat, the sulphonamide readily enters the liver and biliary excretion occurs against a concentration gradient from liver to bile; further, the excretory process can be saturated, and can be depressed by the simultaneous administration of phenolphthalein glucuronide or bile salts. 3. In the rabbit, these conditions have not been found; succinylsulphathiazole does not readily enter the liver from the plasma, there is no transfer of the drug from the liver cells to the bile against a concentration gradient, and no saturation or depression of the biliary excretion of succinylsulphathiazole is found. 4. It is suggested that two factors responsible, at least partly, for the low biliary excretion of succinylsulphathiazole in the rabbit are the poor entry of the sulphonamide into the liver in this species and a deficiency of the concentrative mechanism for its excretion in the bile.  相似文献   

19.
N O Bodin 《Life sciences》1974,14(4):685-692
After oral administration of 3H-alprenolol to man, dog and rat, urinary metabolites of the drug have been separated by ion-exchange chromatography on Bio-Rex 70, a carboxylic acrylate resin. The major metabolite has been identified by GC-MS as 4-hydroxyalprenolol. Occurring in the urine largely in a conjugated form, it represents about 40 % of the excreted amount in man and dog and about 30 % in rat. Including alprenolol, which also appears largely as a conjugate, about 80 % of the amount of radioactivity excreted in human urine can be accounted for.  相似文献   

20.
The metabolic fate of 9-fluoro-11β,16α,17,21-tetrahydroxy-l, 4-pregnadiene-3,20-dione cyclic 16,17-acetal with 2-14C-acetone, triaacinolone acetonide (TA) was studied in rabbits, dogs, monkeys and rats and found to be qualitatively similar in all species. In the dog, rat and monkey the major excretory route was the feces irrespective of the mode of administration. In the rabbit the excreted radioactivity was equally distributed between urine and feces. The metabolites were isolated by preparative thin layer chroma tography, located by autoradiography, eluted and analyzed by MS, IR, UV and NMR. The major metabolites of triamcinolone acetonide (TA) were identified as the C-21 carboxylic acids of TA and of the 6β hydroxy-TA,(6β-OH-TA) and the previously identified (1,2) 6β-OH-TA. In addition MS and UV data indicate the presence of 9-fluoro-11β,16α, 17-trihydroxy-3,20-dioxo-1,4,6-pregnatrien-21-oic acid cyclic 16,17 acetal with 2-14C-acetone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号