首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Under dissociated sperm transfer, (non-pairing) males deposit spermatophores on a substrate, while females seek spermatophores and pick up sperm on their own. Spermatophore expenditures of non-pairing males should be high, due to the increased uncertainty of sperm uptake by a female. In this study I examined spermatophore expenditures in two eriophyoid species that differed in the degree of dissociation between sexes: (1) Aculus fockeui (Nalepa and Trouessart) males rarely visit quiescent female nymphs (QFNs), and mostly deposit spermatophores all over the leaves, whereas (2) Aculops allotrichus (Nalepa) males guard QFNs for many hours and deposit several spermatophores beside them. Males of both species were collected from the field and tested in solitude. Aculus fockeui males deposited on average 19.1 spermatophores per day, whereas A. allotrichus deposited only 3.6 spermatophores per day, and had a very large coefficient of variation. Males and spermatophores of A. allotrichus were significantly smaller and contained less sperm than those of A. fockeui. In both eriophyoids, spermatophore size was fitted to the size of female genitalia and the height of females. The ratio between the diameter of spermatophore head and the width of a female genital coverflap was 0.6, whereas the ratio between the female leg and the length of spermatophore stalk was 0.5. Several factors could be responsible for the discrepancy in spermatophore expenditures between species. Among other factors, the effects of male size, male reproductive strategy and female genitalia size on spermatophore output and size of spermatophores are discussed.  相似文献   

2.
高勇  康乐 《昆虫学报》2002,45(3):397-400
大多数动物在繁殖过程中,雌性在繁殖过程中要比雄性付出更大投资,如相对于精子较大的卵子细胞,较长的育幼时间等,因而在交配过程中,雌性具有选择权,而雄性之间相互竞争以取得与雌性的交配权。然而自然世界中并不总是竞争的雄性(competitive male)-选择的雌性(selective female)这种婚配形式。在螽斯类昆虫中,雄性同样具有较大的父方投资。在繁殖期间,雄性螽斯争相鸣叫,求偶,且在交配后要给予雌性特殊的营养物质-精包,供雌性取食。因此在特定情况下,雌性之间将进行竞争以获取雄性配偶,雄性变得更具有选择性。影响这种性角色逆转的主要因素是可获得资源的紧缺。父方投资理论和性选择理论预测雄性显著地对后代投资时,雌性将表现出典型的雄性特征,她们竞争追求性活跃的雄性,而雄性将表现出典型的雌性特征,对配偶具有选择性。螽斯类昆虫中这种特殊的性角色逆转现象符合性选择理论和父方投资理论的预测。  相似文献   

3.
During mating, male bushcrickets transfer a spermatophore that consists of a sperm-containing ampulla and a product of the accessory glands, the spermatophylax, which females directly ingest. In the present study, we demonstrate male spermatophore allocation in the bushcricket Poecilimon zimmeri . Males of this species show condition-dependent spermatophore investment. This investment depended upon the age at first mating of males, with older individuals transferring larger spermatophores than younger ones of the same body mass. Independently of age, heavier males transfer larger spermatophores, but the size of males (as measured by femur length) was not a good predictor. Heavier males allocate a lower proportion of their mass to spermatophores and reach their maximal investment point earlier than less heavy males. Spermatophylax production levelled off to a species specific maximum earlier than that of sperm investment (measured as ampulla mass), suggesting that males face high levels of sperm competition.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 354–360.  相似文献   

4.
Gerald  Legg 《Journal of Zoology》1974,173(3):323-339
The genitalia of the male Cheiridium museorum Leach consists of a cup-shaped ejaculatory canal atrium which opens into a simple saccate genital atrium. Associated with the genital atrium are a number of thickened regions of the cuticle: the dorsal apodeme, lateral apodemes and lateral rods. These both support the genital atrium and provide regions for muscle attachment. Two pairs of accessory glands, anterior and posterior dorsal glands, are present.
The genital atrium of the female is divided into a median and two lateral diverticula. Lateral apodemes are present, as are two sets of accessory glands, lateral and median glands.
The possible function of the genitalia of the male is considered.  相似文献   

5.
During mating, many male insects transfer sperm packaged within a spermatophore that is produced by reproductive accessory glands. While spermatophores have been documented in some North American fireflies (Coleoptera: Lampyridae), little is known concerning either production or transfer of spermatophores in the aquatic Luciola fireflies widespread throughout Asia. We investigated this process in Japanese Luciola lateralis and L. cruciata by feeding males rhodamine B, a fluorescent dye known to stain spermatophore precursors. We then mated males with virgin females, and dissected pairs at various timepoints after mating. In both of these Luciola species, spermatophores were produced by three pairs of male accessory glands and were transferred to females during the second stage of copulation. Male spermatophores were highly fluorescent, and were covered by a thin outer sheath; a narrow tube leading from an internal sperm-containing sac fit precisely into the female spermathecal duct, presumably for sperm delivery. Both L. lateralis and L. cruciata females have a spherical spermatheca as well as a highly extensible gland where spermatophore breakdown commences by 24h post-mating. Similar reproductive anatomy was observed for both sexes in Luciola ficta from Taiwan. These results suggest that nuptial gifts may play an important role in many firefly-mating systems.  相似文献   

6.
Although mating has been described in several hermit crab species, the mechanics of spermatophore transfer have not previously been demonstrated. Evidence from pleopod and gonopore morphology, video observations, and inseminated females indicates that in Clibanarius vittatus the male applies a spermatophoric mass directly onto the female via the gonopores rather than with modified pleopods 1-2 (gonopods) and/or genital papillae as in many other decapods. The single second pleopod of males of C. vittatus has a simple endopod with no apparent modifications for sperm transfer. There are no genital papillae extending from the male gonopores. The globular spermatophores are aligned in rows surrounded by a seminal secretion in the male ducts (vasa deferentia that terminate in ejaculatory ducts opening to the exterior via the gonopores). During copulation, described from time-lapse video recordings, the ventral surface of the last thoracic segment of the male, bearing the gonopores, was apposed to the ventral cephalothorax of the female. A massive amount of seminal secretion containing spermatophore ribbons, termed here the spermatophoric mass and described for the first time in a hermit crab species, was observed covering the sternites and coxae of pereopods 1-5 of a recently copulated female. It is suggested that during copulation the male emits the contents of the ejaculatory ducts directly onto the female without the aid of gonopods or genital papillae. Although spermatophore transfer is simple in C. vittatus, the presence of modified anterior pleopods or elongate genital papillae (sexual tubes) in other paguroidean species suggests the possibility of a more complex insemination process in these other hermit crabs.  相似文献   

7.
Eriophyoid females store sperm either asymmetrically in one spermatheca, or symmetrically in both spermathecae. Previous studies have suggested that species in which females store sperm asymmetrically pick up sperm from only one spermatophore, while those with symmetrical sperm storage pick up sperm from two or more spermatophores during their lifetime. The aim of this study was to examine spermatophore visitation behaviour and symmetry of sperm storage in Aculops allotrichus from the black locust tree and Cecidophyopsis hendersoni from the yucca. This would indicate monandry or polyandry in these species. In both eriophyoids, the spermatophore visitation consisted of three phases: mounting, lying on the spermatophore and dismounting. Aculops allotrichus stored sperm asymmetrically. However, nearly one-third of the observed females visited two spermatophores, rather than only one in their lives. When A. allotrichus females visited two spermatophores they spent a similar amount of time at the first and at the second visitation. Also, the times of visitation of the first of the two spermatophores and the single spermatophore in a female lifetime did not differ significantly. This would suggest that apart from monandry, double insemination also occurs in this species. By contrast, C. hendersoni females were polyandrous. They stored sperm symmetrically and visited several spermatophores, on average 1.54 (max 6) per day, and up to 33 spermatophores in their lives. The benefits of repeated spermatophore visitation and the possible mechanisms of sperm storage in both species are discussed.  相似文献   

8.
Our aim was to describe the reproductive system of males and the formation of sperm packages in the seminal receptacle (SR) of recently mated females of the arrow crab Stenorhynchus seticornis. The male reproductive system was analyzed, and was described using light microscopy and histological and histochemical methods. The first pair of gonopods was described by means of scanning electron microscopy. Additionally, the dehiscence of spermatophores was tested using samples obtained from the vas deferens of males and from the seminal receptacle of recently mated females. Testes were tubular type, and each vas deferens consisted of three regions: the anterior vas deferens (AVD), including a proximal portion that was filled with free spermatozoa and a distal portion contained developing spermatophores; the median vas deferens (MVD) that contained completely formed spermatophores; and the posterior vas deferens (PVD), which contained only granular secretions. The accessory gland, which was filled with secretions, was located in the transition region between the MVD and the PVD. The spermatophores from the MVD were of different sizes, and none of them showed dehiscence in seawater, whereas those spermatophores in contact with the seminal receptacle were immediately broken. The ultrastructure of the gonopods revealed the presence of denticles at the distal portion, which contribute to the mechanical rupture of the spermatophore wall during the transfer of sperm. The contents of the PVD and accessory gland of males are transferred together with the spermatophores, and are responsible for the secretions observed among the sperm packets in the SR of the female. We suggest that these secretions formed the layers found in the SR of recently mated females, and may play a role in sperm competition in arrow crabs.  相似文献   

9.
Under sex dissociated sperm transfer, females seek spermatophores and pick up sperm without male assistance. In several species males adjust spermatophore deposition rate to the presence of conspecifics. It is not known, however, which factors could favor such elasticity in non-pairing males. In this paper, we compare male response towards conspecifics between the sex dissociated eriophyoid mites Aculus fockeui (Nalepa and Trouessart) and Aculops allotrichus (Nalepa). The species differ significantly in male reproductive strategies and, consequently, the intensity of male–male-competition. Aculus fockeui males deposit spematophores all over the leaves and occasionally leave single spermatophores beside quiescent female nymphs (QFNs). In contrast, A. allotrichus males guard QFNs and encircle them with spermatophores. In this study, males of both species deposited spermatophores close to and apart from the rival spermatophores. Aculops allotrichus males had similar spermatophore output whether they were kept alone or in a group of seven males. They did not change spermatophore output in the presence of five rival spermatophores, a QFN or a QFN and varying number of rivals, either. In contrast, A. fockeui males increased spermatophore output in the presence of rival spermatophores or when on the arena with a QFN the male number increased to eight males. They did not respond, however, to the presence of a QFN and one rival or a QFN alone. The possible effect of the species-specific intensity of male–male competition, population density, the availability of receptive females and the rate of spermatophore output on the flexibility of eriophyoid spermatophore deposition is discussed.  相似文献   

10.
Success in sperm competition is of fundamental importance to males, yet little is known about what factors determine paternity. Theory predicts that males producing high sperm numbers have an advantage in sperm competition. Large spermatophore size (the sperm containing package) also correlates with paternity in some species, but the relative importance of spermatophore size and sperm numbers has remained unexplored. Males of the small white butterfly, Pieris rapae (Lepidoptera: Pieridae), produce large nutritious spermatophores on their first mating. On their second mating, spermatophores are only about half the size of the first, but with almost twice the sperm number. We manipulated male mating history to examine the effect of spermatophore size and sperm numbers on male fertilization success. Overall, paternity shows either first male or, more frequently, second male sperm precedence. Previously mated males have significantly higher fertilization success in competition with males mating for the first time, strongly suggesting that high sperm number is advantageous in sperm competition. Male size also affects paternity with relatively larger males having higher fertilization success. This may indicate that spermatophore size influences paternity, because in virgin males spermatophore size correlates with male size. The paternity of an individual male is also inversely correlated with the mass of his spermatophore remains dissected out of the female. This suggests that females may influence paternity by affecting the rate of spermatophore drainage. Although the possibility of female postcopulatory choice remains to be explored, these results clearly show that males maximize their fertilization success by increasing the number of sperm in their second mating.  相似文献   

11.
Abstract. The functional morphology and the topographic distribution of tissues in the reproductive system of specimens of Dugesia leporii , an endemic Sardinian free-living planarian, are investigated. Data are provided on the nature of epithelial and glandular secretions, spermatophores, and cocoons by histochemistry, light microscopy, and scanning electron microscopy. All secreting epithelial cells produce strongly acidic sulfated glycoproteins. Glandular cells secrete strongly acidic sulfated glycoproteins or keratohyalin-like material in the penis bulb, and prekeratin-like material in atrial glands. Secretions of the bursa copulatrix may be involved in the activation of sperm while material produced by the bursa canal and oviducts probably serves to propel spermatophores or sperm and eggs. Mucous secretion of the seminal vesicle may serve to dilute and activate sperm before copulation. The viscous secrete of the ejaculatory duct and vasa deferentia may play a protective role to maintain sperm viability. Materials produced by the penis papilla and atrium probably lubricate the epithelial surface. The bilayered wall of spermatophore made of keratohyalin-like material and strongly acidic sulfated glycoproteins is produced by two gland types of the penis bulb. The bilayered shell of cocoon made of prekeratin-like and keratohyalin-like materials is secreted by both atrial glands and vitelline cells. The cocoon stalk is made of keratohyalin-like material produced by cement glands. Shell glands, producing GAG, are not involved in cocoon formation, but they may be implicated in the dilution and activation of seminal material to favor sperm movement toward the oviducts.  相似文献   

12.
The spermatophore morphology of the hermit crab Isocheles sawayai from southwestern Atlantic (Brazil) is described. The spermatophores show similarities with those described for other members of the family Diogenidae, especially with the recently described Loxopagurus loxochelis. The spermatophore is composed of three major regions: a sperm filled head or ampulla, a columnar stalk and a foot or pedestal. The spermatophores show specific morphology in having a circular ampulla, and a constriction or neck between the ampulla (100 μm) and the thin (27 μm), long stalk (500 μm). The stalk penetrates less than half way into the spermatophore head. Most spermatophores show one of the small posterior projections on the underside of the ampulla as being bigger than the other, making it asymmetrical. The size of the spermatophore is related to hermit crab size with direct relationships found between spermatophore ampulla width, total length, and peduncle length with shield length of the hermit crab. The morphological characteristics of the spermatophore of I. sawayai are species-specific distinguishing it from other members of the family, and are useful to infer further phylogenetic relationships.  相似文献   

13.
The Charinus australianus group is a well-defined species group characterised by rounded, cushion-like female gonopods. Before the present study, the morphology of the gonopods and their function have not been understood. This paper describes courtship behaviour, spermatophore morphology, and the morphology of the female genitalia of Charinus neocaledonicus Kraepelin, 1895 and C. australianus (L. Koch, 1867). Courtship behaviour, though different in details, is similar to that of many other species. The spermatophores are large and soft and carry very small sperm packages, each with a short stalk. After sperm transfer, the spermatophore may be eaten by the female. The spermatophore thus transfers not only spermatozoa but also nutritious paternal investment to the female. Each female gonopod is equipped with a seminal receptacle consisting of an atrium and a spacious inner receptacle. The cover of the atrium can be elevated by high blood pressure and pulled back by a group of muscles attached to the inner part of the receptacle. The female probably picks up the sperm packages with the atria of her receptacles. The observations are compared to those on other amblypygids, and the evolution of different types of spermatophores and of gonopods with seminal receptacles is discussed.  相似文献   

14.
Sexual selection in both males and females promotes traits and behaviors that allow control over paternity when female mates with multiple males. Nonetheless, mechanisms of cryptic female choice have been consistently overlooked, due to traditional focus on sperm competition as well as difficulty in distinguishing male vs. female influence over processes occurring during and after mating. The first part of this study describes morphology and transformation of Tribolium castaneum spermatophores inferred from dissecting females immediately after normal or interrupted copulations. T. castaneum males are found to transfer spermatophores as an invaginated tube that everts inside the female bursa and which is filled with sperm during copulation. This sequence of events makes it feasible for females to control the sperm quantity transferred in each spermatophore. Through manipulation of the male phenotypic quality (by starvation) and manipulation of female control over sperm transfer (by killing a subset of females), the second part of this study examines whether females use control over transferred sperm quantity as a cryptic choice mechanism. Fed males transferred significantly more sperm per spermatophore than starved males but only when mating with live females. These results suggest an active differentiation by live females against starved males and provide an evidence for the proposed cryptic female choice mechanism.  相似文献   

15.
Females of the swallowtail butterfly Papilio xuthus L. (Lepidoptera: Papilionidae) mate multiply during their life span and use the spermatophores transferred to increase their longevity as well as fecundity. Sperm from different males may be stored in the sperm storage organs (bursa copulatrix and spermatheca). To clarify the pattern of sperm storage and migration in the reproductive tract, mated females are dissected after various intervals subsequent to the first mating, and the type and activity of sperm in the spermatheca are observed. When virgin females are mated with virgin males, the females store sperm in the spermatheca for more than 10 days. Sperm displacement is found in females that are remated 7 days after the first mating. Immediately after remating, these females flush out the sperm of the first male from the spermatheca before sperm migration of the second male has started. However, females receiving a small spermatophore at the second mating show little sperm displacement, and the sperm derived from the small spermatophore might not be able to enter the spermatheca. Females appear to use spermatophore size to monitor male quality.  相似文献   

16.
Males of the sorghum plant bug, Stenotus rubrovittatus (Matsumura) (Heteroptera: Miridae), transfer a spermatophore to females during copulation. After a 1‐day interval between the first and second copulation, males transferred both sperm and a spermatophore to females during the second copulation. However, when male mating interval was <1 h, they transferred sperm but no spermatophores to females during the second copulation. Therefore, the male mating interval probably produces two types of mated females, those with and those without a spermatophore. Mated females of S. rubrovittatus do not remate for at least 3 days after mating, even when courted, and lay more eggs than virgin females at the beginning of the oviposition period. The effects of spermatophores on female sexual receptivity and fecundity were examined using mated females with or without a spermatophore. Only one of the 40 (2.5%) mated females with a spermatophore remated, whereas 10 of the 26 (38.5%) without a spermatophore remated. Furthermore, mated females with a spermatophore laid more eggs than those without a spermatophore. These results suggest that spermatophores participate in reducing female sexual receptivity and enhancing female fecundity in S. rubrovittatus.  相似文献   

17.
Silphinae (Coleoptera: Silphidae) is an abundant decomposer that plays important roles in the ecosystem. However, there is little information about the life history of this taxon. We found sperm displacement behavior in carrion beetle Silpha perforata. Copulating males bit the female's antenna strongly and inserted the penis into the partner's genital organ more than once. We found a white substance on the tip of penis during copulation. We examined whether this white substance is a previous male's spermatophore, which was removed from the mating partner. When females were dissected just after mating, the same substance that often presents on the penis of mating males was found in the bursa copulatrix of females, although the bursa copulatrix of virgin females was empty. Male behavior during copulation with females of different mating history was also observed to confirm that the removal of spermatophores was observed only in copulation with females that have the spermatophores of previous males. Consequently, we estimated that S. perforata males removed spermatophores of previous males from mating partners. In addition, we dissected the males frozen during copulation, and inspected the penis morphology. This observation revealed that the apical part of the penis was usually hidden in the basal part of penis, but expanded and appeared during insertion. This apical part had many spines, which play an important role in sperm displacement and sexual conflict in some species. These results indicate that there is the sperm competition in S. perforata. This is the first report on sperm competition in Silphinae.  相似文献   

18.
In insects, spermatophore production represents a non‐trivial cost to a male. Non‐virgin males have been shown to produce small spermatophores at subsequent matings. Particularly in monandrous species, it may be an issue to receive a sufficiently large spermatophore at the first and typically only mating. Females of the monandrous Speckled wood butterfly Pararge aegeria (L.) produce fewer offspring after mating with a non‐virgin male. After mating, females spend all their active time selecting oviposition sites and typically ignore other males. Here, we show that females did not discriminate between a virgin male and a recently mated male in our laboratory experiments. We demonstrate that the number of eupyrene sperm bundles relative to spermatophore mass differed with subsequent male matings. Males transferred a significantly smaller spermatophore after the first copulation, but the spermatophore mass did not decrease further with subsequent matings. However, the number of eupyrene sperm bundles decreased linearly. Therefore, there was proportionally more eupyrene sperm in the male’s second spermatophore compared with the first and the later spermatophores. Such a pattern has been shown in polyandrous species. Hence, it suggests that differences in sperm allocation strategy between polyandrous and monandrous butterflies may be quantitative rather than qualitative. There was also a tendency for females that had mated with a recently mated male to have higher propensity to remate than did females that had mated with a virgin male. We discuss the results relative to the mating system in P. aegeria, including female remating opportunities in the field and male mate‐locating behaviour.  相似文献   

19.
Histology of the cloacae of Rhyacotriton olympicus and representative species from the genera Ambystoma and Dicamptodon was examined by light microscopy. Females of Ambystoma possess sperm storage glands, the spermathecae, as well as ventral glands and dorsal glands, both of uncertain function. Females of Ambystoma examined from the subgenus Linguaelapsus differ from those in the subgenus Ambystoma by possessing more extensive ventral gland clusters and a shorter cloacal tube. Females of Dicamptodon possess spermathecae and ventral glands, but differ in cloacal conformation from females of Ambystoma and lack the dorsal glands. Females of R. olympicus possess more extensive epidermal lining in the cloaca than that found in females of Ambystoma and Dicamptodon, and the only glands present are spermathecae, which cluster around a tube in the dorsal roof. Males of Ambystoma, Dicamptodon, and R. olympicus possess five types of cloacal glands (dorsal pelvic glands, lateral pelvic glands, anterior ventral glands, posterior ventral glands, and Kingsbury's glands) that function in spermatophore formation, and vent glands that may produce a courtship pheromone. In Ambystoma and Dicamptodon, vent glands secrete along the medial borders of the cloacal orifice. Males of A. opacum and A. talpoideum differ from males of other species examined from the two genera by possessing more extensive vent glands. Males of R. olympicus possess unique vent glands in which tubules secrete onto the surface of vent lobes lateral to the posterior end of the cloacal orifice, and distal ends of the glands pass anteriorly, superficial to the fascia enclosing the other cloacal glands. The results from analysis of cloacal anatomy support other data indicating that Ambystoma and Dicamptodon are sister groups, and that Rhyacotriton olympicus is not closely related to either of the other two genera and merits placement in a separate family.  相似文献   

20.
The male reproductive system of seven species of the family Bothriuridae are compared. These scorpions are Bothriurus flavidus Kraepelin, B. cordubensis Acosta, B. bonariensis (C. L. Koch), B. chacoensis Maury & Acosta, Brachistosternus ferrugineus (Thorell), Timogenes dorbignyi (Guérin-Méneville), T. elegans (Mello-Leitão) and Urophonius brachycentrus Pocock (Bothriuridae). Additional comparisons are made with the buthid Zabius fuscus (Thorell). Observations on the structures associated with the paraxial organs (testis, seminal vesicle and accessory glands) are given. Sperm obtained from the male reproductive tract and fresh spermatophores as well as from the female's genital atrium and seminal receptacles are examined. Accessory glands occur in six out of eight studied bothriurids and in the buthid Z. fuscus. In most species the distal portion of vas deferens has a developed ampulla. All structures vary in size and shape depending on species. Sperm packages were observed in all bothriurids. In contrast, there is no packaged spermatozoa in Z. fuscus. Each sperm package consists of many spermatozoa surrounded by a common membrane that breaks after the spermatophore capsule is everted into the female genital atrium, releasing the spermatozoa. One hour after insemination, the spermatozoa are found in the atrium and in the seminal receptacles of B. flavidus females, but after 24h spermatozoa are found only in the seminal receptacles. The functional significance of the accessory glands and the presence-absence of sperm packages are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号