首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
The Ll.LtrB group II intron from the low-G+C gram-positive bacterium Lactococcus lactis was the first bacterial group II intron shown to splice and mobilize in vivo. This retroelement interrupts the relaxase gene (ltrB) of three L. lactis conjugative elements: plasmids pRS01 and pAH90 and the chromosomal sex factor. Conjugative transfer of a plasmid harboring a segment of the pRS01 conjugative plasmid including the Ll.LtrB intron allows dissemination of Ll.LtrB among L. lactis strains and lateral transfer of this retroelement from L. lactis to Enterococcus faecalis. Here we report the dissemination of the Ll.LtrB group II intron among L. lactis strains following conjugative transfer of the native chromosomally embedded L. lactis sex factor. We demonstrated that Ll.LtrB dissemination is highly variable and often more efficient from this integrative and conjugative element than from an engineered conjugative plasmid. Cotransfer among L. lactis strains of both Ll.LtrB-containing elements, the conjugative plasmid and the sex factor, was detected and shown to be synergistic. Moreover, following their concurrent transfer, both mobilizable elements supported the spread of their respective copies of the Ll.LtrB intron. Our findings explain the unusually high efficiency of Ll.LtrB mobility observed following conjugation of intron-containing plasmids.  相似文献   

2.
3.
4.
5.
6.
Group II introns are mobile retroelements that invade their cognate intron-minus gene in a process known as retrohoming. They can also retrotranspose to ectopic sites at low frequency. Previous studies of the Lactococcus lactis intron Ll.LtrB indicated that in its native host, as in Escherichia coli, retrohoming occurs by the intron RNA reverse splicing into double-stranded DNA (dsDNA) through an endonuclease-dependent pathway. However, in retrotransposition in L. lactis, the intron inserts predominantly into single-stranded DNA (ssDNA), in an endonuclease-independent manner. This work describes the retrotransposition of the Ll.LtrB intron in E. coli, using a retrotransposition indicator gene previously employed in our L. lactis studies. Unlike in L. lactis, in E. coli, Ll.LtrB retrotransposed frequently into dsDNA, and the process was dependent on the endonuclease activity of the intron-encoded protein. Further, the endonuclease-dependent insertions preferentially occurred around the origin and terminus of chromosomal DNA replication. Insertions in E. coli can also occur through an endonuclease-independent pathway, and, as in L. lactis, such events have a more random integration pattern. Together these findings show that Ll.LtrB can retrotranspose through at least two distinct mechanisms and that the host environment influences the choice of integration pathway. Additionally, growth conditions affect the insertion pattern. We propose a model in which DNA replication, compactness of the nucleoid and chromosomal localization influence target site preference.  相似文献   

7.
8.
9.
10.
11.
12.
Some self-splicing group II introns (ribozymes) are mobile retroelements. These retroelements, which can insert themselves into cognate intronless alleles or ectopic sites by reverse splicing, are thought to be the evolutionary progenitors of the widely distributed eukaryotic spliceosomal introns. Lateral or horizontal transmission of introns (i.e. between species), although never experimentally demonstrated, is a well-accepted model for intron dispersal and evolution. Horizontal transfer of the ancestral bacterial group II introns may have contributed to the dispersal and wide distribution of spliceosomal introns present in modern eukaryotic genomes. Here, the Ll.LtrB group II intron from the Gram-positive bacterium Lactococcus lactis was used as a model system to address the dissemination of introns in the bacterial kingdom. We report the first experimental demonstration of horizontal transfer of a group II intron. We show that the Ll.LtrB group II intron, originally discovered on an L. lactis conjugative plasmid (pRS01) and within a chromosomally located sex factor in L. lactis 712, invades new sites using both retrohoming and retrotransposition pathways after its transfer by conjugation. Ll.LtrB lateral transfer is shown among different L. lactis strains (intraspecies) (retrohoming and retrotransposition) and between L. lactis and Enterococcus faecalis (interspecies) (retrohoming). These results shed light on long-standing questions about intron evolution and propagation, and demonstrate that conjugation is one of the mechanisms by which group II introns are, and probably were, broadly disseminated between widely diverged organisms.  相似文献   

13.
14.
The conjugative element pRS01 from Lactococcus lactis encodes the putative relaxase protein LtrB. The ltrB gene is interrupted by the functional group II intron Ll.ltrB. Accurate splicing of the two ltrB exons is required for synthesis of the mRNA encoding the LtrB conjugative relaxase and subsequent plasmid transfer. A conjugation-based genetic assay was developed to identify Ll.ltrB mutations that affect splicing. In this assay a nonsplicing, transfer-defective pRS01 derivative (pM1014) and a shuttle vector carrying the ltrB region, including the Ll.ltrB intron (pCOM9), are used. pCOM9 provides splicing-dependent complementation of the transfer defect of pM1014. Site-directed mutations within Ll.ltrB, either in the catalytic RNA or in the intron-encoded protein gene ltrA, were generated in the context of pCOM9. When these mutants were tested in the conjugation-based assay, significantly reduced mating was observed. Quantitative molecular analysis of in vivo splicing activity confirmed that the observed mating defects resulted from reduced splicing. Once the system was validated for the engineered mutants, random mutagenesis of the intron followed by genetic and molecular screening for splicing defects resulted in identification of point mutations that affect splicing.  相似文献   

15.
16.
Group II introns are large ribozymes that require the assistance of intron-encoded or free-standing maturases to splice from their pre-mRNAs in vivo. They mainly splice through the classical branching pathway, being released as RNA lariats. However, group II introns can also splice through secondary pathways like hydrolysis and circularization leading to the release of linear and circular introns, respectively. Here, we assessed in vivo splicing of various constructs of the Ll.LtrB group II intron from the Gram-positive bacterium Lactococcus lactis. The study of excised intron junctions revealed, in addition to branched intron lariats, the presence of perfect end-to-end intron circles and alternatively circularized introns. Removal of the branch point A residue prevented Ll.LtrB excision through the branching pathway but did not hinder intron circle formation. Complete intron RNA circles were found associated with the intron-encoded protein LtrA forming nevertheless inactive RNPs. Traces of double-stranded head-to-tail intron DNA junctions were also detected in L. lactis RNA and nucleic acid extracts. Some intron circles and alternatively circularized introns harbored variable number of non-encoded nucleotides at their splice junction. The presence of mRNA fragments at the splice junction of some intron RNA circles provides insights into the group II intron circularization pathway in bacteria.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号