首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Coupling of carboxypeptidase with diazotized arsanilic acid specifically modifies a single tyrosyl residue. Yet, owing to the fact that the resultant azoTyr-248 can form an intramolecular chelate with zinc, two different circular dichroism probes result: azoTyr-248 itself and the azoTyr-248-Zn chelate. Both are environmentally sensitive and, characteristically, each can signal the same or different perturbations, as is apparent from circular dichroic spectra. This dual probe function greatly magnifies the scope of these chromophores in mapping the topography of the active center with respect to sites of interaction of inhibitors (or substrates). Titration of the azoenzyme with a series of synthetic, competitive inhibitors, e.g., L-benzylsuccinate, L-phenyllactate, and L-Phe, and with the pseudosubstrate, Gly-L-Tyr, in turn generates characteristic circular dichroic spectra. Their analysis yields a single binding constant for each of these agents, one molecule of each binding to the active center. Mixed inhibitions, as seen with beta-phenylpropionate and phenylacetate, resolved previously into competitive and noncompetitive components, are characterized by different spectral effects. Two molecules of these agents bind to the enzyme, consistent with both thermodynamic and enzymatic studies. The interactions leading to competitive and noncompetitive inhibition, respectively, can be recognized and assigned, based on the manner in which the extrema at 340 and 420 nm, reflecting azoTyr-248, and the negative 510-nm circular dichroism band, typical of its chelate with zinc, are affected and on the pH dependence of spectral and kinetic data. Certai4 noncompetitive inhibitors and modifiers induce yet other spectral features. Each probe is very sensitive to changes in its particular active center environment, though both can be relatively insensitive to inhibitors interacting at a distance from the active center.  相似文献   

3.
Interaction of zinc ions with arsanilazotyrosine-248 carboxypeptidase A   总被引:1,自引:0,他引:1  
J Hirose  M Noji  Y Kidani  R G Wilkins 《Biochemistry》1985,24(14):3495-3502
The interaction between arsanilazotyrosine-248 carboxypeptidase A ([(Azo-CPD)Zn]) and excess zinc ions has been studied by stopped-flow and spectrophotometric methods at pH 8.2 and 7.7, I = 0.5 M (NaCl), and 25 degrees C. When excess zinc ions bind to arsanilazotyrosine-248 carboxypeptidase A, the characteristic red color, which arises from the intramolecular complex of the arsanilazotyrosine-248 residue with the active site zinc of the enzyme, changes to yellow with the inhibition of peptidase activity of the enzyme. Excess zinc ions have two binding sites for arsanilazotyrosine-248 carboxypeptidase A, and the binding constants of the first site (3.9 X 10(5) M-1 at pH 8.2; 7.1 X 10(4) M-1 at pH 7.7) are much larger than those of the second site (1.8 X 10(3) M-1 at pH 8.2; 7 X 10(2) M-1 at pH 7.7). The binding of excess zinc ions to the first site is completely correlated with the inhibition of the enzyme peptidase activity and the color change of the enzyme. The results can be understood in terms of zinc ions reacting with only one of three conformational states of arsanilazotyrosine-248 carboxypeptidase A [Harrison, L. W., Auld, D. S., & Vallee, B. L. (1975) Proc. Natl. Acad. Sci. U.S.A. 72, 4356].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
Cho JH  Kim DH  Lee KJ  Kim DH  Choi KY 《Biochemistry》2001,40(34):10197-10203
We have investigated the function of Tyr248 using bovine wild-type CPA and its Y248F and Y248A mutants to find that the K(M) values were increased by 4.5-11-fold and the k(cat) values were reduced by 4.5-10.7-fold by the replacement of Tyr248 with Phe for the hydrolysis of hippuryl-L-Phe (HPA) and N-[3-(2-furyl)acryloyl]-Phe-Phe (FAPP), respectively. In the case of O-(trans-p-chlorocinnamoyl)-L-beta-phenyllactate (ClCPL), an ester substrate, the K(M) value was increased by 2.5-fold, and the k(cat) was reduced by 20-fold. The replacement of Tyr248 with Ala decreased the k(cat) values by about 18- and 237-fold for HPA and ClCPL, respectively, demonstrating that the aromatic ring of Tyr248 plays a critical role in the enzymic reaction. The increases of the K(M) values were only 6- and 5-fold for HPA and ClCPL, respectively. Thus, the present study indicates clearly that Tyr248 plays an important role not only in the binding of substrate but also in the enzymic hydrolysis. The kinetic results may be rationalized by the proposition that the phenolic hydroxyl of Tyr248 forms a hydrogen bond with the zinc-bound water molecule, causing further activation of the water molecule by reducing its pK(a) value. The pH dependency study of k(cat) values and the solvent isotope effects also support the proposition. A unified catalytic mechanism is proposed that can account for the different kinetic behavior observed in the CPA-catalyzed hydrolysis of peptide and ester substrates.  相似文献   

6.
Reaction of carboxypeptidase A crystals with diazotized arsanilic acid uniquely modifies Tyr-248 to form a monazo derivative, which-in solution-forms an intramolecular inner-sphere coordination complex in the active site zinc atom. tarsanilazocarboxypeptidase exhibits spectral properties that are closely similar to those of the model complex, tetrazolylazo-N-carbobenzoxytyrosine Zn2+, with a distinctive maximum at 510 nm. In addition, its circular dichroic spectrum reveals a negative extremum at this wavelength, also characteristic of this complex. Both spectra are exquisitely responsive to pth changes and serve to monitor formation and dissociation of the metal-azophenol complex. Two pKapp at 7.7 and 9.5 delineate the pH range over which the probe characteristics most effectively gauge conformational features of the active center of arsanilazcarboxypeptidase. Other environmental parameters, e.g., substrates and inhibitors, as well as crystallization of the enzyme also critically influence the formation and dissociation of the complex; the response of the probe suggests that they induce conformational movement of the azoTyr-248 residue away from the zinc atom. tthe now available chemical, functional, structural data bearing on the spatial relationships of Tyr-248 and Zn, both thought critical to catalysis, are evaluated, based on spectra of arsanilazo- and nitrocarboxypeptidase crystals and solutions as well as on detailed kinetic analyses of the native enzyme in both physical states and based on the X-ray structure analysis of the native enzyme and its Gly-L-Tyr complex. Collectively all of the data show that the conformation of carboxypeptidase in crystals differs from that in solution. Moreover, reexamination of the original X-ray maps reported in 1968 and thought to preclude a Tyr-248-Zn interaction now leads to the conclusion that in up to 25 per cent of the molecules in the crystals ttyr-248 interacts with the active site zinc atom (W.D. Lipscomb (1973), Proc. Nat. Acad. Sci U.S. 70, 3797). Thus, even in the crystals the enzyme exists in at least two different conformations. In one of these Tyr-248 is near while in the other it is far from the zinc atom. The spectral effects of Gly-L-Tyr and beta-phenylpropionate on solutions of arsanilazo- and of nitrocarboxypeptidase demonstrate that during the catalytic process Tyr-248 moves away from the zinc atom. This implies a mechanistic role for Tyr-248 different from that postulated on the basis of X-ray crystallographic analysis. Indeed, the proximity of ttyr-248 to the zinc atom, when altered by substrates and inhibitor, may reflect certain of the properties characteristic of the entatic, active site.  相似文献   

7.
Characterization of bovine carboxypeptidase A (Allan)   总被引:2,自引:0,他引:2  
  相似文献   

8.
9.
10.
In solution, nitrocarboxypeptidase A, modified at tyrosyl-248, exhibits a nitrotyrosyl pK apparent of 6.3. In the crystalline state, the pK apparent is about 8.2. This change in ionization is consistent with the hypothesis that crystallization of the enzyme causes a displacement of tyrosine-248 away from the active site zinc ion.  相似文献   

11.
Cobalt (3) carboxypeptidase A: preparation and esterase activity   总被引:1,自引:0,他引:1  
Co(II) carboxypeptidase A has been oxidized to Co(III) carboxypeptidase A with hydrogen peroxide. The resultant metalloprotein has an absorption spectrum different from that of the Co(II) enzyme and the metal is no longer removable by dialysis. The Co(III) carboxypeptidase A retains esterase activity comparable to that of the Co(II) enzyme and has very low peptidase activity. This demonstrates that scission of a bond to the first coordination sphere of the metal is not necessary for the hydrolysis of ester substrates.  相似文献   

12.
Carboxypeptidase H, EC 3.4.17.10, also known as enkephalin convertase, carboxypeptidase E, and crino carboxypeptidase B, is an important enzyme involved in the biosynthesis of bioactive peptides. To assay the enzyme, tissues are homogenized in at least 20 vol (ml/g) of 0.025 M Tris-HCl buffer, pH 8, with 5 mg/ml of bovine serum albumin. After centrifugation, the supernatant is brought to pH 5.6 and centrifuged again. Following a 20-min preincubation in 2 mM CoCl2, the supernatant is incubated with 0.1 mM (final concentration) of the radioactive substrate [3H]benzoyl-Phe-Ala-Arg. The 100-microliters assay is stopped by the addition of 680 microliters of acetonitrile/0.25 M HCl (0.7/1). The 1.5-ml tube is transferred into a scintillation vial and is flushed with 4 ml of Econofluor, a water-immiscible scintillation fluid. The product, [3H]benzoyl-Phe-Ala, recovered in the organic phase, is counted directly with no interference from the substrate remaining in the aqueous phase. The blank is below 1%. Expressed in nanomoles per minute per milligram of tissue, the activity of the soluble enzyme in rat is 0.34 for striatum, 21.0 for pancreatic islet, 16.6 for anterior pituitary, 46.0 for intermediate pituitary, and 10.9 for neural pituitary. In every case 25 microM guanidinoethylmercaptosuccinic acid, an active site-directed inhibitor of carboxypeptidase H, completely inhibits the activity.  相似文献   

13.
14.
Using microarray analyses, we identified carboxypeptidase A (MF-CPA), which was induced during pupal ecdysis in the wing discs of Bombyx mori. Here, we report the functional characterization of MF-CPA. MF-CPA has amino acid sequence similarities with the proteins in the carboxypeptidase A/B subfamily, from human to nematode. The MF-CPA gene is expressed during the molting periods in the epithelial tissues. MF-CPA is detected in the molting fluid, which fills the space between the old and new cuticle during molting. By Western blot analysis, we show that MF-CPA is secreted as a zymogen and processed in the molting fluid. Recombinant MF-CPA expressed in the insect cells has carboxypeptidase A activity. We propose that MF-CPA degrades the proteins from the old cuticle during the molting periods and contributes to recycling of the amino acids.  相似文献   

15.
Lysosomal carboxypeptidase A (cathepsin A) is synthetized in the form of preproenzyme, which undergoes to active enzyme as a result of post-translational modification. It splits off C-terminal amino acid residues from peptides and proteins and synergizes with other proteases in degradation of cellular proteins in lysosomes. Lysosomal carboxypeptidase A has an effect on peptide hormones and peptides of biological activity of tissues and body fluids as well. It forms complexes with some glycosidases that protects them against proteolytic degradation. Deficiency of this enzyme induces storage diseases. Lysosomal carboxypeptidase A as multifunctional enzyme plays an important regulatory role in organismal metabolism.  相似文献   

16.
17.
A preparation of tubulin carboxypeptidase partially purified from bovine brain was found to contain a protein of molecular mass 30 kDa (P30) as determined by SDS-PAGE, that is recognized by a polyclonal anti-bovine pancreatic carboxypeptidase A. However, this protein is different from pancreatic carboxypeptidase A as judged by the isoelectric point and the pattern of peptides produced by trypsin digestion. The isoelectric point of P30 was similar to that found for tubulin carboxypeptidase (9 ± 0.2). When the tubulin carboxypeptidase preparation was subjected to gel filtration chromatography under low salt concentration, P30 behaved as a protein of molecular mass 38 kDa whereas tubulin carboxypeptidase eluted at a position of 75 kDa molecular mass. However, when the chromatography was performed at relatively high salt concentration they behaved as proteins of 49 and 56 kDa, respectively. We considered that P30 may be an inactive monomeric form of the dimeric tubulin carboxypeptidase. However we can not rule out the possibility that it represents another carboxypeptidase not yet described.  相似文献   

18.
19.
M S Urdea  J I Legg 《Biochemistry》1979,18(22):4984-4991
This investigation demonstrates the use of substitution-inert metal ions as site-specific amino acid modifying reagents. The approach involves the production of a chelating agent at the site of interest with the subsequent in situ oxidation of substitution-labile cobalt(II) to exchange-inert cobalt(III) with H2O2. We have produced the chelate complex ethylenediamine-N,N'-diacetato(arsanilazotyrosinato-248 carboxypeptidase A)cobalt(III) [CoIII(EDDA)(AA-CPA-Zn)]. Model CoIII(EDDA)(azophenolate) complexes have helped to define the reaction conditions necessary to produce the enzyme derivative and have proved invaluable in the spectral analysis of the cobalt(III)-enzyme complex. The modified enzyme contains one active-site zinc and one externally bound cobalt per enzyme monometer. Circular dichroism and visible spectra of the derivative and apoenzyme substantiate the site-specific nature of the incorporation. Concimitant with CoIIIEDDA incorporation, the enzyme loses its peptidase activity yet maintains with FeIIEDTA returns the original properties of the arsanilazotyrosine-248 enzyme.  相似文献   

20.
N-(Hydroxyaminocarbonyl)phenylalanine (1) was designed rationally as a new type of inhibitor for carboxypeptidase A (CPA). The designed inhibitor was readily prepared from phenylalnine benzyl ester in two steps and evaluated to find that rac-1 inhibits CPA in a competitive fashion with the Ki value of 2.09 microM. Surprisingly, inhibitor 1 having the D-configuration is more potent (Ki = 1.54 microM) than its antipode by about 3-fold. A possible explanation for the stereochemistry observed in the inhibition of CPA with 1 is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号