首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary This study was undertaken to investigate thermal adaptations in muscle contractile properties in closely-related lizards with different preferred body temperatures (PBT). The species examined all belong to theSphenomorphus group of Australian skinks (Scincidae: Lygosominae). Preferred body temperatures are conservative at the generic level as follows:Ctenotus, 35°C;Sphenomorphus, 30°C;Eremiascincus, 25°C. Contractile properties of the fast glycolytic portion of the iliofibularis muscle were measured. Translational adaptations are evident in several isometric factors, including tetanic tension (Po), twitch tension (Pt), twitch time to peak tension (TPT), and twitch half-relaxation time (1/2 RT). Capacity adaptations are not evident in rates of tetanic tension development (dPo/dt) or in maximal velocities of isotonic shortening (V max). Rotational adaptations are not evident in any contractile properties. Thermal limits on upper response temperatures are about 5°C warmer inCtenotus than in the more cryophilic species, indicative of resistance adaptation in muscle performance. Despite these adaptive shifts, there is little indication that muscle functional capacities are optimized or equalized at PBT in these lizards.Abbreviations FG fast glycolytic - IF iliofibularis muscle - PBT preferred body temperature - Po tetanic tension - Pt twitch tension - 1/2RT twitch half relaxation time - TPT twitch time to peak tension  相似文献   

2.
Abstract The running speed of Agama stellio stellio was 2.1 ± 0.3 m s?1 at preferred body temperature (Tb, 30°C). To account for sprint locomotion, we meaured two mechanical parameters and examined the ultrastructural features of a major locomotory muscle in normal walking and running locomotion, the iliofibularis muscle, which is considered to act as an extensor of the lower hind limb. The time to peak isometric twitch tension and time to half relaxation were 52 ± 7 ms and 76 ± 5 ms, respectively. The comparative ultrastructure of the fast and slow fibes provides structure-to-function correlation. The sarcoplasmic reticulum and T-tubules system are abundant in fast fibres which serve to transmit Ca2+ and spread the excitatory impulse intracellularly with great rapidity. In contrast, the membranous system of slow fibres is relatively poor and this indicates slow impulse propagation. Thus, these results show that the fast locomotion of Agama stellio stellio can, in part, be explained by the physiology and ultrastructure of the fibres of the locomotory muscles.  相似文献   

3.
Lizard skeletal muscle fiber types were investigated in the iliofibularis (IF) muscle of the desert iguana (Dipsosaurus dorsalis). Three fiber types were identified based on histochemical staining for myosin ATPase (mATPase), succinic dehydrogenase (SDH), and alphaglycerophosphate dehydrogenase (alphaGPDH) activity. The pale region of the IF contains exclusively fast-twitch-glycolytic (FG) fibers, which stain dark for mATPase and alphaGPDH, light SDH. The red region of the IF contains fast-twitch-oxidative-glycolytic (FOG) fibers, which stain dark for all three enzymes, and tonic fibers, which stain light for mATPase, dark for SDH, and moderate for alphaGPDH. Enzymatic activities of myofibrillar ATPase, citrate synthase, and alphaGPDH confirm these histochemical interpretations. Lizard FG and FOG fibers possess twitch contraction times and resistance to fatigue comparable to analogous fibers in mammals, but are one-half as oxidative and several times as glycolytic as analogous fibers in rats. Lizard tonic fibers demonstrate the acetylcholine sensitivity common to other vertebrate tonic fibers.  相似文献   

4.
We have carried out a comprehensive study of the formation of muscle fibers in the human quadriceps in a large series of well dated human foetuses and children. Our results demonstrate that a first generation of muscle fibers forms between 8-10 weeks. These fibers all express slow twitch myosin heavy chain (MHC) in addition to embryonic and foetal MHCs, vimentin and desmin. Between 10-11 weeks, a subpopulation of these fibers express slow tonic MHC, being the first primordia of muscle spindles. Extrafusal fibers of a second generation form progressively and asynchronously around the primary fibers between 10-18 weeks, giving the muscle a very heterogeneous aspect due to different degrees of organization of their proteins. By 20 weeks, these second generation fibers become homogeneous and thereafter undergo a process of maturation and differentiation when they eliminate vimentin, embryonic and foetal MHCs to express either slow twitch or fast MHC. The differentiation of these second generation fibers into slow and fast depends upon different factors, such as motor innervation or level of thyroid hormone. Around the intrafusal first generation fibers, additional subsequent generations of fibers are also progressively formed. Some differ from the extrafusal second generation fibers by expressing slow tonic MHC, others by continuous expression of foetal MHC. The differentiation of intrafusal fibers is probably under the influence of both sensory and motor innervation.  相似文献   

5.
The iliofibularis is a hindlimb muscle used in lizard locomotion that is composed of at least three types of fibres: fast‐twitch‐glycolytic (FG), fast‐twitch‐oxidative‐glycolytic fibre (FOG) and slow‐twitch‐oxidative (SO). The striated skeletal muscle is a highly plastic tissue undergoing phenotypic change in response to activity. The lizard Sceloporus torquatus has sexual differences associated with microhabitat use, which can be reflected in the physiology and anatomy of the muscle, and thus, in our study, we analysed the morphological and contractile characteristics of the iliofibularis muscle (IF) of S. torquatus males and females. We found a larger prevalence of FOG compared with FG and SO fibres in the muscle of both sexes. We also found that males show larger areas of the three types of fibres, develop greater strength but also faster fatigue than females, suggesting that strength is a key functional feature that enables males to perform faster movements (but for shorter periods), associated with the demands of territoriality.  相似文献   

6.
Summary The capacity of skeletal muscle to synthesize glycogen from lactate was tested in the iliofibularis muscle of the desert iguana,Dipsosaurus dorsalis. Like other reptiles,Dipsosaurus accumulates significant lactic acid concentrations following vigorous exercise. After 5 min of progressively faster treadmill running at 35°C (final speed=2.2 km/h), blood lactate concentration increased over 14 mM, which decreased 11 mM after 2 h of recovery. Blood glucose concentration remained unchanged throughout at 8.6±0.46 mM. The role that muscle gluconeogenesis might play in the removal of post-exercise lactate was evaluated. Animals were run to exhaustion at 1.5 km/h on a treadmill thermostatted at 35°C. Animals (n=43) ran 6.9±0.75 min prior to exhaustion. Animals were sacrificed and iliofibularis muscles of both hindlimbs removed and stimulated at 2 Hz for 5 min, reducing twitch tension to 6% of prestimulus tension. Fatigued muscles were then split into red and white fiber bundles and incubated 2 h or 5 h at 35°C in Ringer solution or in Ringer plus 20 mM lactate. In muscles tested in August, red fiber bundles incubated in lactate demonstrated a rate of glycogen synthesis of approximately 1 mg/(g muscle·h). In muscles tested in December, red fiber bundles synthesized glycogen at a reduced rate that was not statistically different than in fiber bundles incubated in Ringer solution without lactate. Glycogen synthesis from lactate was not evident in white fiber bundles in either August or December. The period of peak gluconeogenic capacity coincides with the field active season ofDipsosaurus. In vivo rates of lactate removal and in vitro rates of glycogen synthesis suggest that muscle gluconeogenesis may potentially account for 20% of the lactate removed during recovery from exhaustive activity.Abbreviations IF iliofibularis - FG fast twitch, glycolytic - FOG fast twitch, oxidative-glycolytic  相似文献   

7.
Most vertebrate muscles are composed of a mixture of fiber types. However, studies of muscle mechanics have concentrated on homogeneous bundles of fibers. Hindlimb muscles of the tiger salamander, Ambystoma tigrinum, present an excellent system to explore the consequences of fiber heterogeneity. Isometric twitches and work loops were obtained in vitro from two muscles, the m. iliotibialis pars posterior (heterogeneous, containing types I, IIa and IIb fibers) and the m. iliofibularis (nearly homogeneous for type IIa fibers). Maximal isometric twitch and tetanic stresses in m. iliotibialis posterior were significantly greater than in iliofibularis. Work loops were obtained over a range of frequencies (0.5-3.0 Hz) and strains (2-6% muscle length) that encompassed the observed ranges in vivo. Work per cycle from the homogeneous iliofibularis declined from 1.5-3.0 Hz, while that from the heterogeneous m. iliotibialis posterior increased from 0.5 Hz to 2.5 Hz and declined at 3.0 Hz. Power output from the iliofibularis rose with frequency to at least 3 Hz; power from the iliotibialis posterior rose with frequency to 2.5 Hz and declined thereafter. Mass-specific work per cycle and power output were higher in iliofibularis than iliotibialis posterior over most frequencies and strains tested.  相似文献   

8.
The effects of changing muscle length on the mechanical properties of 89 motor units from adult cat medial gastrocnemius have been studied in eight experiments. Few differences were found between the effects of length on tetanic tension, twitch tension, twitch-tetanus ratio, twitch contraction time, twitch half relaxation time, rate of force development and electrical activity for fast contracting (twitch contraction time less than or equal to 45 msec) and slowly contracting (greater than 45 msec) units. Those differences that did appear did not persist when these two groups were matched by tetanic tension. It is concluded that the biophysical mechanisms responsible for the changes in mechanical and electrical properties with length must be similar for fast and slow twitch units and not related to potential differences in their muscle fiber type. The effects of changing muscle length on the mechanical properties of the eight whole muscles suggest that changes in force output with length are of minor importance during normal movements as the muscle is found to be electrically active over a relatively narrow range of lengths close to the optimum length for tetanus of the whole muscle. The very shortest muscle lengths at which there is only minimal force development are not used in natural movements, while the declining limb of the length tension curve is at muscle lengths beyond the maximum in situ length.  相似文献   

9.
Histochemical analysis of five muscles from the water monitor, Varanus salvator, identified three major classes of fibers based on histochemical activities of the enzymes myosin ATPase (mATPase), succinic dehydrogenase (SDH), and alpha-glycerophosphate dehydrogenase (alpha GPDH). Fast-twitch, glycolytic (FG) fibers were the most abundant fiber type and exhibited the following reaction product intensities: mATPase, dark; SDH, light; alpha GPDH, moderate to dark. Fast-twitch, oxidative, glycolytic (FOG) fibers were characteristically mATPase, dark; SDH, light; alpha GPDH, moderate to dark. The third class of fibers had the following histochemical characteristics: mATPase, light; SDH, moderate to dark; alpha GPDH, light. These fibers were considered to be either slow twitch, or tonic, and oxidative (S/O). Pyruvate kinase (PK), alpha GPDH, and citrate synthase (CS) activities were measured in homogenates of the same muscles studied histochemically. There was a positive relationship between both PK and alpha GPDH activities and the percentage of glycolytic fiber types within a muscle. Likewise, CS activities were greater in muscles high in FOG and S/O content. Based on CS activities, Varanus S/O fibers were eight-fold more oxidative than FG fibers within the same muscle. PK/CS ratios suggested that FG fibers possess high anaerobic capacity, similar to the iguanid lizard Dipsosaurus. The fiber type composition of the gastrocnemius muscle, relative to that of other lizard species, suggests that varanid lizards may possess a greater proportion of FOG and S/O fibers than other lizards.  相似文献   

10.
The composition of adult rat soleus muscle spindles, with respect to myosin heavy chain isoforms and M-band proteins, was studied by light-microscope immunohistochemistry. Serial sections were labelled with antibodies against slow tonic, slow twitch, fast twitch and neonatal myosin isoforms as well as against myomesin, M-protein and the MM form of creatine kinase. Intrafusal fiber types were distinguished according to the pattern of ATPase activity following acid and alkaline preincubations. Nuclear bag1 fibers were always strongly stained throughout with anti-slow tonic myosin, were positive for anti-slow twitch myosin towards and in the C-region but were unstained with anti-fast twitch and anti-neonatal myosins. The staining of nuclear bag2 fibers was in general highly variable. However, they were most often strongly stained by anti-slow tonic myosin in the A-region and gradually lost this reactivity towards the poles, whereas a positive reaction with anti-slow twitch myosins was found along the whole fiber. Regional staining variability with anti-neonatal and anti-fast myosins was apparent, often with decreasing intensity towards the polar regions. Nuclear chain fibers showed strong transient reactivity with anti-slow tonic myosin in the equatorial region, did not react with anti-slow twitch and were always evenly stained by anti-fast twitch and anti-neonatal myosins. All three intrafusal fiber types were stained with anti-myomesin. Nuclear bag1 fibers lacked staining for M-protein, whereas bag2 fibers displayed intermediate staining, with regional variability, often increasing in reactivity towards the polar regions. Chain fibers were always strongly stained by anti-M-protein. The MM form of creatine kinase was present in all three fiber types, but bag1 fibers were less reactive and clear striations were not observed, in contrast to bag2 and chain fibers. Out of 38 cross sectioned spindles two were found to have an atypical fiber composition (lack of chain fibers) and a rather diverse staining pattern for the different antibodies tested. Taken together, the data show that in adult rat soleus, slow tonic and neonatal myosin heavy chain isoforms are only expressed in the muscle spindle fibers and that each intrafusal fiber type has a unique, although variable, composition of myosin heavy chain isoforms and M-band proteins. We propose that both motor and sensory innervation might be the determining factors regulating the variable expression of myosin heavy chain isoforms and M-band proteins in intrafusal fibers of rat muscle spindles.  相似文献   

11.
The lizard family Phrynosomatidae comprises three subclades: the closely related sand and horned lizards, and their relatives the Sceloporus group. This family exhibits great variation in ecology, behavior, and general body plan. Previous studies also show that this family exhibits great diversity in locomotor performance abilities; as measured on a high-speed treadmill, sand lizards are exceptionally fast sprinters, members of the Sceloporus group are intermediate, and horned lizards are slowest. These differences are paralleled by differences in relative hindlimb span. To determine if muscle fiber-type composition also varies among the three subclades, we examined the iliofibularis (IF), a hindlimb muscle used in lizard locomotion, in 11 species of phrynosomatid lizards. Using histochemical assays for myosin ATPase, an indicator of fast-twitch capacity, and succinic dehydrogenase, denoting oxidative capacity, we classified fiber types into three categories based on existing nomenclature: fast-twitch glycolytic (FG), fast-twitch oxidative-glycolytic (FOG), and slow-twitch oxidative (SO). Sand lizards have a high proportion of FG fibers (64-70%) and a low proportion of FOG fibers (25-33%), horned lizards are the converse (FG fibers 25-31%, FOG fibers 56-66%), and members of the Sceloporus group are intermediate for both FG (41-48%) and FOG (42-45%) content. Hence, across all 11 species %FOG and %FG are strongly negatively correlated. Analysis with phylogenetically independent contrasts indicate that this negative relationship is entirely attributable to the divergence between sand and horned lizards. The %SO also varies among the three subclades. Results from conventional nested ANCOVA (with log body mass as a covariate) indicate that the log mean cross-sectional area of individual muscle fibers differs among species and is positively correlated with body mass across species, but does not differ significantly among subclades. The log cross-sectional area of the IF varies among species, but does not vary among subclades. Conversely, the total thigh muscle cross-sectional area does not vary among species, but does vary among subclades; horned lizards have slimmer thighs. Muscle fiber-type composition appears to form part of a coadapted suite of traits, along with relative limb and muscle sizes, that affect the locomotor abilities of phrynosomatid lizards.  相似文献   

12.
Summary The composition of adult rat soleus muscle spindles, with respect to myosin heavy chain isoforms and M-band proteins, was studied by light-microscope immunohistochemistry. Serial sections were labelled with antibodies against slow tonic, slow twitch, fast twitch and neonatal myosin isoforms as well as against myomesin, M-protein and the MM form of creatine kinase. Intrafusal fiber types were distinguished according to the pattern of ATPase activity following acid and alkaline preincubations.Nuclear bag1 fibers were always strongly stained throughout with anti-slow tonic myosin, were positive for anti-slow twitch myosin towards and in the C-region but were unstained with anti-fast twitch and anti-neonatal myosins. The staining of nuclear bag2 fibers was in general highly variable. However, they were most often strongly stained by anti-slow tonic myosin in the A-region and gradually lost this reactivity towards the poles, whereas a positive reaction with anti-slow twitch myosins was found along the whole fiber. Regional staining variability with antineonatal and anti-fast myosins was apparent, often with decreasing intensity towards the polar regions. Nuclear chain fibers showed strong transient reactivity with anti-slow tonic myosin in the equatorial region, did not react with anti-slow twitch and were always evenly stained by anti-fast twitch and anti-neonatal myosins. All three intrafusal fiber types were stained with anti-myomesin. Nuclear bag1 fibers lacked staining for M-protein, whereas bag2 fibers displayed intermediate staining, with regional variability, often increasing in reactivity towards the polar regions. Chain fibers were always strongly stained by anti-M-protein. The MM form of creatine kinase was present in all three fiber types, but bag1 fibers were less reactive and clear striations were not observed, in contrast to bag2 and chain fibers. Out of 38 cross sectioned spindles two were found to have an atypical fiber composition, (lack of chain fibers) and a rather diverse staining pattern for the different antibodies tested.Taken together, the data show that in adult rat solcus, slow tonic and neonatal myosin heavy, chain isoforms are only expressed in the muscle spindle fibers and that each intrafusal fiber type has a unique, although variable, composition of myosin heavy chain isoforms and M-band proteins. We propose that both motor and sensory innervation might be the determining factors regulating the variable expression of myosin heavy chain isoforms and M-band proteins in intrafusal fibers of rat muscle spindles.  相似文献   

13.
The tonic anterior latissimus dorsi muscle of the pigeon was excised, minced into fine pieces, replaced into its original bed, and allowed to regenerate for periods up to 37 weeks. Although regeneration was asynchronous, regeneration patterns of the muscle fibers suggested the following sequence of fiber development: undifferentiated to tonic to twitch. Fiber types were identified on the basis of Z-line morphology and qualitative development and organization of the sarcotubular system as demonstrated by electron microscopy. Histochemical demonstration of myofibrillar adenosine triphosphatase and succinic dehydrogenase activities corroborated the morphological evidence, suggesting a transformation to a twitch morphology. In addition to the transformation to the twitch morphology, other alterations were observed in these regenerating fibers. Among these were large numbers of closely-packed 60-nm-diameter tubules, thought to be derived from the sarcoplasmic reticulum; mitochondria with intermembraneous dense material; and Z-line streaming. The transformation of the muscle fibers from tonic to twitch morphology is discussed in terms of alterations in nerve impulse activity to the regenerating muscle.  相似文献   

14.
Summary Histochemical studies of the opercularis muscle of the bullfrog (Rana catesbeiana) and the tiger salamander (Ambystoma tigrinum) provide evidence that the opercularis muscle of anurans is a specialized, tonic portion of the levator scapulae superior muscle. Staining results for myosin adenosine triphosphatase (ATPase) and succinate dehydrogenase (SDH), combined with measurements of muscle fiber diameters, demonstrate that the opercularis/levator scapulae superior muscle mass of both the tiger salamander and bullfrog consists of an anterior tonic portion, a middle fast oxidative-glycolytic (FOG) twitch portion, and a posterior fast-glycolytic (FG) twitch portion. In R. catesbeiana the tonic fibers represent 57.3% of the fiber total and (because they have relatively narrow diameters) about 29% of the cross-sectional area of the muscle mass, and form that part of the muscle (=opercularis muscle) that inserts on the operculum. In Ambystoma the tonic fibers represent only 8.8% of the fiber total and represent about 4% of the cross-sectional area. In the tiger salamander, the entire levator scapulae superior muscle inserts on the operculum and therefore represents the opercularis muscle. The bullfrog differs from the tiger salamander, therefore, in that the anterior tonic part of the opercularis/levator scapulae superior complex is greatly enlarged and the insertion on the operculum is limited to these tonic fibers. No evidence of a columellar muscle was found in R. catesbeiana. Previous reports of one in this species and in other anurans may be based on the tripartite nature of the opercularis/levator scapulae superior muscle mass. The middle FOG portion of the muscle may have been considered a muscle distinct from the anterior tonic portion (=opercularis muscle) and the posterior FG portion.  相似文献   

15.
The wing muscles used in singing by the katydid, Neoconocephalus robustus, are extraordinarily fast. At 35 degrees C, the animal's thoracic temperature during singing, an isometric twitch lasts only five to eight msec (onset to 50% relaxation) and the fusion frequency of these muscles is greater than 400 Hz. Stimulating the motornerve to a singing muscle initiates a short (2.5 msec at 35 degrees C), sometimes overshooting depolarization of the muscle fibers. Despite their spike-like appearance, the electrical responses are largely synaptic potentials. The muscle membrane appears to be capable of only weak, electrically-excitable, depolarizing electrogenesis. The short synaptic potentials result in part from rapidly-developing delayed rectification, in part from a low resting membrane resistance (Rm = 162 omega cm2) and a concomitantly short membrane time constant (about 1.5 msec).  相似文献   

16.
Summary The white and red regions of the iliofibularis muscle of the lizard Dipsosaurus dorsalis were analyzed using histologic and morphometric analysis. These regions are composed of fast glycolytic (FG) and both fast oxidative, glycolytic (FOG) and tonic fibers, respectively. Endplate morphology and number of endplates per fiber were estimated from fibers from both areas. Capillary volume densities of the red and white regions were quantified from transverse sections. Mitochondrial volume of fibers from the red and white regions were estimated from electron micrographs.All fibers from the white region of the iliofibularis possessed a single, well defined endplate, as did most red region fibers. The remaining red fibers (28±5%) possessed an average of 14.7±3 endplates each, distributed along the entire length of the fiber at intervals of approximately 1124 m.Red fibers possessed twice the mitochondrial volume of white fibers (7.6±0.4%, red; 3.8±0.3%, white). Mitochondria were distributed uniformly through the fibers from both regions. Capillary anisotropy was low ( = 1.018) in both regions. Capillary densities of the red region (629±35 mm-2) were much greater than those of the corresponding White region (73±8 mm-2).The data indicate that capillary densities, mitochondrial volumes and theoretical diffusion distances correlate well with the oxidative capacity of lizard muscle fibers. Tonic fibrs of this species appear oxidative and therefore metabolically capable of functioning during locomotion. The similar mitochondrial volumes and capillary densities of reptilian and mammalian muscles suggest that the greater oxidative capacity of mammalian muscle is due in part to possession of more oxidatively active mitochondria rather than to possession of more mitochondria per se.  相似文献   

17.
In view of the supposition that a dolphin can swim faster than would be predicted based on its physical features and presumed muscle power potential, studies were initiated to reevaluate the assumptions made in reaching these conclusions. Several previous studies have shown that the architectural and histochemical properties of a skeletal muscle dictate its force, velocity and displacement properties. This study examined the muscle fiber lengths and tendon arrangements of the dorsal and ventral axial muscles in dolphins ( Tursiops truncatus ). Fiber type and fiber size distributions were determined to reflect the general biochemical characteristics of the musculature. The dorsal muscles had a higher mean fiber length (167 Vs. 90 mm) and the range within and across different dorsal muscles was less (141–199 vs. 37–185 mm) than in the ventral muscles. Both the dorsal and ventral muscles consisted of an overall mean of 50 percent slow twitch and 50 percent fast twitch fiber types. The fast twitch fibers were 67 percent larger (2,200 vs. 1,317 μ m 2) than the slow twitch fibers in the ventral and 38 percent larger (1,213 Vs. 879 μm2) in the dorsal muscles. In addition, the mean cross sectional area of the fibers in the ventral muscles was approximately 65 percent greater (1,750 vs. 1,072 μm2) than those in the dorsal muscles. The shorter, larger-diameter fibers of the ventral musculature give it a greater potential for force production for a given amount of muscle mass. In contrast, the dorsal muscles appear to be designed to optimize velocity and displacement, ( i.e. , longer fibers). These findings contribute to the information necessary for the determination of the power potential of the musculature of the dolphin.  相似文献   

18.
Contractile properties and innervation patterns were determined in identified single fibers from the iliofibularis muscle of the desert iguana, Dipsosaurus dorsalis. Single fibers from both the red and white regions of the iliofibularis muscle were dissected along their length under oil and a portion was mounted on transducers for determination of maximum isometric tension (Po) and unloaded shortening velocity (Vmax) using the slack test method. Fibers were chemically skinned and activated by high Ca++. The remaining portion of the muscle fiber was mounted on a glass slide and histochemically treated to demonstrate myosin ATPase activity. Fibers studied functionally could therefore be classified as fast or slow according to their myosin ATPase activity, and they could also be classified metabolically according to the region of the muscle from which they were dissected. Fast-twitch glycolytic (FG) fibers from the white region and fast-twitch oxidative, glycolytic (FOG) and slow fibers from the red region had shortening velocities at 25 degrees C of 7.5, 4.4, and 1.5 l X s-1, respectively. Po did not differ in the three fiber types, averaging 279 kN X m-2. In a second experiment, 10 microns sections were examined every 30 microns through the proximal-most 7.5 mm of the iliofibularis muscle for motor endplates. Sections were stained to demonstrate regions of acetylcholinesterase activity. Fibers with visible endplates were classified in serial sections by histochemical treatment for myosin ATPase and succinic dehydrogenase. All slow fibers examined (n = 22) exhibited multiple endplates, averaging one every 725 microns.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The pigeon's metapatagialis muscle consists of three slips, two twitch and one tonic, and these slips are distinguishable at the gross anatomical level. Comparative studies of denervation are facilitated because the two fiber types are under the same mechanical forces, can be denervated as one muscle, and can be distinguished after denervation. Both fiber types atrophied after denervation, with the twitch fibers having a more variable response. Pathological alterations observed by light microscopy suggested that the twitch fibers were more affected by denervation than the tonus fibers. Ultrastructurally, both fiber types showed the same changes, with the twitch fibers again being more consistently altered. Proliferation of the transverse tubular system and sarcoplasmic reticulum were more marked in the tonus than twitch fibers, and the sarcoplasmic reticulum proliferated prior to the transverse tubules. Filament and fibril degeneration, peripheral and central degeneration, lysosomes and their derivatives, and satellite cell proliferation were common to both fiber types. Contracture knots were common to the denervated fibers, and were suggested to be characteristic of degenerating fibers. Degenerating motor end plates were observed, and most neurons in the fibers were naked, lacking myelin sheaths. The results are discussed in relation to the function of the neuron in maintaining the muscle, and the possibility of denervation inducing a transformation of tonic to twitch fibers.  相似文献   

20.
Singing muscles of the katydid, Neoconocephalus robustus (Insecta, Tettigoniidae) are neurogenic, yet perform at contraction-relaxation frequencies as high as 212 Hz (Josephson and Halverson, '71). The mechanical and electrical responses of different bands of one of these muscles (the dorsal longitudinal muscle, DLM) has been examined with respect to ultrastructural features of each part which may be related to muscle performance. The DLM is composed of three bands and is innervated by four motoneurones. The cell bodies of three of these motoneurones occur ipsilaterally in the prothroracic ganglion; the cell body of the other motoneurone is contralateral in the mesothoracic ganglion. Three of the motoneurones (as yet unidentified fast axons) initiate extraordinarily fast twitches (rise time equal 7.3 msec, half duration equals 14.3 msec, 25 C), the fourth (an unidentified slower axon) evokes twitches which are considerably slower (rise time equals 18.9 msec, half duration equals 5.10 msec). Whereas the ventral and medial bands of the muscle are innervated only by fast axons (some fibers of the medial band are doubly innervated), the dorsal band is innervated by both a fast axon and the slower axon. A few fibers of the dorsal band are doubly innervated. The structure of fibers from the ventral and medial bands is very similar, with short sarcomeres (4.0 and 4.3 mum, respectively) and thin strap-like myofibrils delineated by well-developed sarcoplasmic reticulum (SR). Twenty-four percent of the volume of ventral band fibers is SR and the diffusion distance from SR to the center of the adjacent myofibril averages 0.083 mum. Twenty percent of the medial band fiber volume is SR, with a diffusion distance of 0.118 mum. Ventral and medial band fibers contain about 40% mitochondria, and 33% myofibrils. The dorsal band fibers have longer sarcomeres (9.5 mum), and only 10% of the fiber volume is SR. The muscle fibrils of the dorsal band are larger and consequently the diffusion distance is greater (0.227 mum) than in the ventral and medial bands. Mitochondria comprise 23% of the volume of dorsal band fibers. Most dorsal band mitochondria are aggregated into distinct clumps. Although some dorsal band fibers are innervated by a fast axon and some by the slower axon, the dorsal band fibers are structurally homogeneous, suggesting that neurotrophic effects are not important in maintaining the structure of dorsal band fibers. The mechanical-electrical performance and ultrastructure of the ventral and medial bands suggest their roll as fast, metabolically active but weak muscles, used in singing; the dorsal band as a slower but stronger muscle, perhaps involved in postural movements of the wing during singing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号