首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Chondrocytes are widely used as an in vitro model of cartilage diseases such as osteoarthritis (OA). As the unique residents of mature cartilage, they are responsible of the synthesis and release of proteins essential for a proper tissue turnover. In this work, the stable isotope labeling with amino acids in cell culture (SILAC) technique has been standardized in primary human articular chondrocytes (HACs) for quantitative proteomic analyses. Then, it has been employed to study those protein modifications caused by the proinflammatory cytokine Interleukin-1beta (IL-1β), a well-known OA mediator, in these cells. Quantitative analysis of the IL-1β-treated HACs proteome revealed a global increase in cellular chaperones concurrent with a down-regulation of the actin cytoskeleton. HACs secretome analysis led to the identification and quantification of 115 proteins and unveiled the effects of the cytokine on the cartilage extracellular matrix metabolism. Among those modulated proteins, three protein clusters were found to be remarkably increased by IL-1β: proinflammatory mediators and proteases, type VI collagen and proteins known to bind this molecule, and proteins related with the TGF-beta pathway. On the other hand, secretion of aggrecan, two vitamin K-dependent proteins, and thrombospondin, among others, was strongly reduced. Altogether, these data demonstrate the usefulness of metabolic labeling for quantitative proteomics studies in HACs, show the complementarity of intracellular proteome and secretome analyses, and provide a comprehensive study of the IL-1β-mediated effects on these cells. Proteins identified in the secretome approach have a potential use as biomarkers or therapeutic targets for OA.  相似文献   

2.
Fibronectin fragments (FN-f) that bind to the alpha(5)beta(1) integrin stimulate chondrocyte-mediated cartilage destruction and could play an important role in the progression of arthritis. The objective of this study was to identify potential cytokine mediators of cartilage inflammation and destruction induced by FN-f and to investigate the mechanism of their stimulation. Human articular chondrocytes, isolated from normal ankle cartilage obtained from tissue donors, were treated with a 110-kDa FN-f in serum-free culture, and expression of various cytokine genes was analyzed by cDNA microarray and by a cytokine protein array. Compared with untreated control cultures, stimulation by FN-f resulted in a >2-fold increase in IL-6, IL-8, MCP-1, and growth-related oncogene beta (GRO-beta). Constitutive and FN-f-inducible expression of GRO-alpha and GRO-gamma were also noted by RT-PCR and confirmed by immunoblotting. Previous reports of IL-1beta expression induced by FN-f were also confirmed, while TNF expression was found to be very low. Inhibitor studies revealed that FN-f-induced stimulation of chondrocyte chemokine expression was dependent on NF-kappaB activity, but independent of IL-1 autocrine signaling. The ability of FN-f to stimulate chondrocyte expression of multiple proinflammatory cytokines and chemokines suggests that damage to the cartilage matrix is capable of inducing a proinflammatory state responsible for further progressive matrix destruction, which also includes the chemoattraction of inflammatory cells. Targeting the signaling pathways activated by FN-f may be an effective means of inhibiting production of multiple mediators of cartilage destruction.  相似文献   

3.
4.
Pro-inflammatory cytokines IL-1β and TNFα play important roles in the manifestation of arthritis by disrupting the anabolic and catabolic activities of the chondrocytes. We observed a novel mechanism of cartilage regulation by which muscle cells diminish the response of chondrocytes to IL-1β and TNFα. We found that chondrocytes cocultured with muscle cells or cultured in muscle cell-conditioned medium significantly enhanced the expression of cartilage matrix proteins (collagen II and collagen IX) and resisted IL-1β and TNFα-induced cartilage damage. Our data suggest that this effect is achieved by inhibiting the expression of key components of the signaling pathways of pro-inflammatory cytokines (including NFκB, ESE-1, Cox-2, and GADD45β), leading to attenuated expression of cartilage-degrading enzymes (MMPs and ADAMTS4). Therefore, our work unveils a potential role of muscle in regulating cartilage homeostasis and response to pro-inflammatory stimuli, and provides insights on designing treatment strategies for joint degenerative diseases such as arthritis.  相似文献   

5.
Comprehensive proteome profiling of the factors secreted by mesenchymal stem cells (MSCs), referred to as secretome, revealed that it consists of cytokines, chemokines, growth factors, extracellular matrix proteins, and components of regeneration, vascularization, and hematopoiesis pathways. Harnessing this MSC secretome for therapeutic applications requires the optimization of production of secretary molecules. A variety of preconditioning methods have been introduced, which subject cells to stimulatory molecules to create the preferred response and stimulate persistent effects. Pharmacological preconditioning uses small molecules and drugs to increase survival of MSCs after transplantation or prolong release of effective secretary factors such as cytokines that improve immune system responses. In this study, we investigated the effect of secretome of human embryonic-derived mesenchymal stem cells (hESC-MSCs) preconditioned with Trimetazidine (TMZ) and Diazoxide (DZ) on immunomodulatory efficiency of these cells in LPS-induced peripheral blood mononuclear cells (PBMCs). PBMCs were isolated from human peripheral blood and treated with concentrated hESC-MSC-derived conditioned medium and then, the secreted levels of IL-10, TNFα and IL-1β were assessed by ELISA after induction with LPS. The results showed that TMZ and DZ-conditioned medium significantly enhanced immunomodulatory potential of hESC-MSCs by increasing the secretion of IL-10, TNFα and IL-1β from LPS- induced PBMCs. We also found that hESC-MSCs did not secrete mentioned cytokines prior to or after the preconditioning with TMZ and DZ. In conclusion, our results implied that TMZ and DZ can be used to promote the immunomodulatory effects of hESC-MSC secretome. It is obvious that for applying of these findings in clinical demands, the potency of different pre-conditioned MSCs secretome on immune response needs to be more clarified.  相似文献   

6.
7.
The present work aimed to take advantage of the screening capacity of protein arrays to search for additional targets of rhein in interleukin (IL)-1-stimulated chondrocytes. Primary cultures of chondrocytes from osteoarthritic (OA) patients were stimulated for 24 and 48 h with 1 ng/ml of IL-1alpha, in the presence or absence of 10(-5) M of rhein. Culture supernatants were analyzed with arrays membranes consisting of 120 antibodies directed against cytokines, chemokines, and angiogenic or growth factors and were controlled for 8 proteins by specific immuno-enzymatic assays (ELISA). Protein arrays showed that several CC or CXC chemokines, the growth factor GM-CSF, the cytokines IL-6, IL-7 and IL-10 (but unexpectedly not IL-1beta or TNFalpha) and the adhesion molecule ICAM-1 were induced maximally by IL-1alpha. In IL-1-stimulated chondrocytes, rhein reduced slightly the production of MCP-1 and increased those of IL-1Ra, of the cytokine receptors sgp130, IL-6R, sTNFR I and R II, but also of some chemokines or ICAM-1. Specific ELISAs confirmed the effect of rhein on MCP-1, IL-1Ra, sgp130, IL-6R and sTNFR II but was discrepant for GROalpha and were always more sensitive than protein arrays to detect IL-1 effects such as IL-1Ra and TNFalpha release. The present data show that rhein modulated some IL-1-induced responses contributing possibly to its chondroprotective (IL-1Ra, MCP-1) or cytokine modifying (sTNFR II, sgp130) properties, but that protein arrays were poorly sensitive to check for IL-1- and/or rhein-induced changes.  相似文献   

8.
9.
It is widely believed that the cytokines tumor necrosis factor (TNF)-alpha, interleukin (IL)-1, and IL-6 are the main proinflammatory mediators induced in the host by bacteria and their cell wall components. To test this hypothesis, we compared the level of expression of 600 genes activated in human monocytes by Staphylococcus aureus, peptidoglycan, endotoxin, and interferon-gamma. These stimulants induced expression of over 120 genes, as identified by cDNA arrays. The highest activated genes for proinflammatory mediators induced by all three bacterial stimulants were chemokine genes (IL-8 and macrophage inflammatory protein (MIP)-1alpha), whereas cytokine genes (TNF-alpha, IL-1, and IL-6) were induced to a lower extent. Genes for other chemokines (MIP-2alpha, MIP-1beta, and monocyte chemoattractant protein-1) were also induced higher than the cytokine genes by peptidoglycan, and as high or higher than the cytokine genes by S. aureus and endotoxin. This high induction of chemokine genes was confirmed by quantitative RNase protection assay, and high secretion of chemokines was confirmed by enzyme-linked immunosorbent assays. Although genes for chemokines were the highest and genes for cytokines were the second highest induced genes by all three bacterial stimulants, each stimulus induced a unique pattern of gene expression. By contrast, expression of a completely different gene pattern was induced by a nonbacterial stimulus, interferon-gamma. These results establish chemokines as the main mediators induced by both Gram-positive and Gram-negative bacteria and are consistent with the highly inflammatory nature of bacterial infections.  相似文献   

10.
The role of cytokines in osteoarthritis pathophysiology   总被引:54,自引:0,他引:54  
  相似文献   

11.
12.

Introduction

Chondroitin sulfate (CS) is a symptomatic slow-acting drug for osteoarthritis (OA) widely used in the clinic. The aim of this work is to find proteins whose secretion from cartilage cells under proinflammatory stimuli (IL-1β) is regulated by CS, employing a novel quantitative proteomic approach.

Methods

Human articular chondrocytes released from three normal cartilages were grown in SILAC medium. When complete incorporation of the heavy isotope was achieved, chondrocytes were stimulated with IL-1β 5 ng/ml with or without CS pretreatment (200 µg/ml). Forty-eight hours later, chondrocyte secretomes were analyzed by nano-scale liquid chromatography-mass spectrometry. Real-time PCR, western blot and immunohistochemistry analyses were employed to confirm some of the results.

Results

We could identify 75 different proteins in the secretome of human articular chondrocytes. Eighteen of these were modulated by CS with statistical significance (six increased and 12 decreased). In normal chondrocytes stimulated with IL-1β, CS reduces inflammation directly by decreasing the presence of several complement components (CFAB, C1S, CO3, and C1R) and also indirectly by increasing proteins such as TNFα-induced protein (TSG6). TSG6 overexpression correlates with a decrease in pro-matrix metalloproteinase activation (observed in MMP1 and MMP3 levels). Finally, we observed a strong CS-dependent increase of an angiogenesis inhibitor, thrombospondin-1.

Conclusion

We have generated a quantitative profile of chondrocyte extracellular protein changes driven by CS in the presence of IL-1β. We have also provided novel evidences of its anti-angiogenic, anti-inflammatory, and anti-catabolic properties. Demonstration of the anti-angiogenic action of CS might provide a novel therapeutic approach for OA targeting.  相似文献   

13.
BACKGROUND: Aside from numerous parenchymal and vascular deposits of amyloid beta (A beta) peptide, neurofibrillary tangles, and neuronal and synaptic loss, the neuropathology of Alzheimer's disease is accompanied by a subtle and chronic inflammatory reaction that manifests itself as microglial activation. However, in Alzheimer's disease, alterations in the permeability of the blood-brain barrier and chemotaxis, in part mediated by chemokines and cytokines, may permit the recruitment and transendothelial passage of peripheral cells into the brain parenchyma. MATERIALS AND METHODS: Human monocytes from different donors were tested for their capacity to differentiate into macrophages and their ability to secrete cytokines and chemokines in the presence of A beta 1-42. A paradigm of the blood-brain barrier was constructed utilizing human brain endothelial and astroglial cells with the anatomical and physiological characteristics observed in vivo. This model was used to test the ability of monocytes/macrophages to transmigrate when challenged by A beta 1-42 on the brain side of the blood-brain barrier model. RESULTS: In cultures of peripheral monocytes, A beta 1-42 induced the secretion of proinflammatory cytokines TNF-alpha, IL-6, IL-1 beta, and IL-12, as well as CC chemokines MCP-1, MIP-1 alpha, and MIP-1 beta, and CXC chemokine IL-8 in a dose-related fashion. In the blood-brain barrier model, A beta 1-42 and monocytes on the brain side potentiated monocyte transmigration from the blood side to the brain side. A beta 1-42 stimulated differentiation of monocytes into adherent macrophages in a dose-related fashion. The magnitude of these proinflammatory effects of A beta 1-42 varied dramatically with monocytes from different donors. CONCLUSION: In some individuals, circulating monocytes/macrophages, when recruited by chemokines produced by activated microglia and macrophages, could add to the inflammatory destruction of the brain in Alzheimer's disease.  相似文献   

14.
MicroRNA-145 has been shown to regulate chondrocyte homeostasis. It seems that miR-145 is implicated in cartilage dysfunction in Osteoarthritis (OA). However, the functional role of miR-145 in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation of OA cartilage has never been clarified. Here, we show that miR-145 expression increased in OA chondrocytes and in response to IL-1β stimulation. We confirm that mothers against decapentaplegic homolog 3 (Smad3), a key factor in maintaining chondrocyte homeostasis, is directly regulated by miR-145. Modulation of miR-145 affects the expression of Smad3 causing a change of its downstream target gene expression as well as IL-1β-induced ECM degradation in OA chondrocytes. This indicates that miR-145 contributes to impaired ECM in OA cartilage probably in part via targeting Smad3.  相似文献   

15.
We have previously shown that p38 mitogen-activated protein kinase (MAPK) inhibitors, which block the production and action of inflammatory cytokines such as tumor necrosis factor (TNF) and interleukin-1 (IL-1), are effective in models of bone and cartilage degradation. To further investigate the role of p38 MAPK, we have studied its activation in osteoblasts and chondrocytes, following treatment with a panel of proinflammatory and osteotropic agents. In osteoblasts, significant activation of p38 MAPK was observed following treatment with IL-1 and TNF, but not parathyroid hormone, transforming growth factor-beta (TGF-beta), 1,25(OH)(2)D(3), insulin-like growth factor-1 (IGF-1), or IGF-II. Similar results were obtained using primary bovine chondrocytes and an SV40-immortalized human chondrocyte cell line, T/C28A4. SB 203580, a selective inhibitor of p38 MAPK, inhibited IL-1 and TNF-induced p38 MAPK activity and IL-6 production (IC(50)s 0.3--0.5 microM) in osteoblasts and chondrocytes. In addition, IL-1 and TNF also activated p38 MAPK in fetal rat long bones and p38 MAPK inhibitors inhibited IL-1- and TNF-stimulated bone resorption in vitro in a dose-dependent manner (IC(50)s 0.3--1 microM). These data support the contention that p38 MAPK plays a central role in regulating the production of, and responsiveness to, proinflammatory cytokines in bone and cartilage. Furthermore, the strong correlation between inhibition of kinase activity and IL-1 and TNF-stimulated biological responses indicates that selective inhibition of the p38 MAPK pathway may have therapeutic utility in joint diseases such as rheumatoid arthritis (RA).  相似文献   

16.
Astrocytes are a very important cell type in the brain fulfilling roles in both neuroimmunology and neurotransmission. We have conducted the most comprehensive analysis of secreted cytokines conducted to date (astrocytes of any source) to determine whether astrocytes derived from the human Ntera2 (NT2) cell-line are a good model of human primary astrocytes. We have compared the secretion of cytokines from NT2 astrocytes with those produced in astrocyte enriched human brain cultures and additional cytokines implicated in brain injury or known to be expressed in the human brain. The concentration of cytokines was measured in astrocyte conditioned media using multiplex bead array (MBA), where 18 cytokines were measured simultaneously. Resting NT2 astrocytes produced low levels (~1-30 pg/ml) of MIP1α, IL-6 and GM-CSF and higher levels of MCP-1, IP-10 and IL-8 (1-11 ng/ml) under non-inflammatory conditions. All of these in addition to IL-1β, TNFα, and IL-13, were increased by pro-inflammatory activation (TNFα or IL-1β stimulation). In contrast, IL-2, IL-4, IL-5, IL-7, IL-10, IL-12, LTα, and IFNγ were not detected in astrocyte conditioned media under any of the culture conditions tested. NT2 astrocytes were unresponsive to IL-2 and the adenyl cyclase agonist, forskolin. Interestingly, IFNγ stimulation selectively increased IP-10 secretion only. As astrocytes stimulated with IL-1β or TNFα produced several chemokines in the ng/ml range, we next assessed the chemoattractant properties of these cells. Conditioned media from TNFα-stimulated astrocytes significantly chemoattracted leukocytes from human blood. This study provides the most comprehensive analysis of cytokine production by human astrocytes thus far, and shows that NT2 astrocytes are highly responsive to pro-inflammatory mediators including TNFα and IL-1β, producing cytokines and chemokines capable of attracting leukocytes from human blood. We conclude that in the absence of adult human primary astrocytes that NT2-astrocytes may provide a valuable alternative to study the immunological behaviour of human astrocytes.  相似文献   

17.
《Cytokine》2010,51(3):297-305
The ailment osteoarthritis (OA) has two aspects – inflammation and cartilage degradation – where combined transgene expression may offer an effective gene therapy. Our present study focuses on the co-expression of interleukin-4 (IL-4) and insulin-like-growth factor-1 (IGF-1), which specifically target inflammation and cartilage repair, respectively. In this study, we analyze the expression of IGF-1 and IL-4 from a single plasmid vector, where each gene is expressed through an independent promoter and enhancer sequence. Regenerative and anti-inflammatory effects of IGF-1 alone and of both IGF-1 and IL-4 were analyzed in an in vitro chondrocyte inflammatory model. Co-expression of both transgenes in primary chondrocytes was ascertained by immunoassays. Following stimulation with IL-1β and TNFα, pro-inflammatory mediators as well as IGF-binding proteins were down-regulated more effectively in the presence of both genes to levels comparable to the non-stimulated control. Further, cartilage regeneration proteins type II collagen and proteoglycans were up-regulated in stimulated cells transfected with IGF-1 alone and in combination with IL-4. The co-expression of IGF-1 and IL-4 shows that both transgenes complement each other by effectively triggering cartilage regeneration and reducing inflammation. Use of combinatorial transgene expression offers a promising avenue in the area of gene therapy in OA.  相似文献   

18.

Introduction

Nerve growth factor (NGF) level is increased in osteoarthritis (OA) joints and is involved in pain associated with OA. Stimuli responsible for NGF stimulation in chondrocytes are unknown. We investigated whether mechanical stress and proinflammatory cytokines may influence NGF synthesis by chondrocytes.

Methods

Primary cultures of human OA chondrocytes, newborn mouse articular chondrocytes or cartilage explants were stimulated by increasing amounts of IL-1β, prostaglandin E2 (PGE2), visfatin/nicotinamide phosphoribosyltransferase (NAMPT) or by cyclic mechanical compression (0.5 Hz, 1 MPa). Before stimulation, chondrocytes were pretreated with indomethacin, Apo866, a specific inhibitor of NAMPT enzymatic activity, or transfected by siRNA targeting visfatin/NAMPT. mRNA NGF levels were assessed by real-time quantitative PCR and NGF released into media was determined by ELISA.

Results

Unstimulated human and mouse articular chondrocytes expressed low levels of NGF (19.2 ± 8.7 pg/mL, 13.5 ± 1.0 pg/mL and 4.4 ± 0.8 pg/mL/mg tissue for human and mouse articular chondrocytes and costal explants, respectively). Mechanical stress induced NGF release in conditioned media. When stimulated by IL-1β or visfatin/NAMPT, a proinflammatory adipokine produced by chondocytes in response to IL-1β, a dose-dependent increase in NGF mRNA expression and NGF release in both human and mouse chondrocyte conditioned media was observed. Visfatin/NAMPT is also an intracellular enzyme acting as the rate-limiting enzyme of the generation of NAD. The expression of NGF induced by visfatin/NAMPT was inhibited by Apo866, whereas IL-1β-mediated NGF expression was not modified by siRNA targeting visfatin/NAMPT. Interestingly, PGE2, which is produced by chondrocytes in response to IL-1β and visfatin/NAMPT, did not stimulate NGF production. Consistently, indomethacin, a cyclooxygenase inhibitor, did not counteract IL-1β-induced NGF production.

Conclusions

These results show that mechanical stress, IL-1β and extracellular visfatin/NAMPT, all stimulated the expression and release of NGF by chondrocytes and thus suggest that the overexpression of visfatin/NAMPT and IL-1β in the OA joint and the increased mechanical loading of cartilage may mediate OA pain via the stimulation of NGF expression and release by chondrocytes.  相似文献   

19.
Su SJ  Yeh TM 《Life sciences》1999,65(24):2581-2590
This study was undertaken to examine the dynamic response of human peripheral blood mononuclear cells (PBMC) in the secretion of proinflammatory and anti-inflammatory cytokines induced by uromodulin (URO). Levels of tumor necrosis factor-alpha (TNFalpha), TNF soluble receptor (sTNFRI and II), interleukin 1-beta (IL-1beta), and IL-1 receptor antagonist (IL-1Ra) in the supernatants of URO-stimulated PBMC were measured by ELISA. URO stimulated the secretion of all these cytokines in a dose dependent manner except sTNFRI. Peak levels of TNFalpha and IL-1beta were reached at 6-12 h, while 5-10 fold higher in sTNFR II and IL-1Ra levels were observed at 24-48 h after URO stimulation. URO-induced secretion of TNFalpha, IL-1beta, sTNFRII and IL-1Ra could be enhanced by human plasma. Specifically, serum proteins including C3, sCD14 and IgG not only bound to URO but also enhanced URO-induced TNFalpha secretion of PBMC. Collectively, our data suggest that URO might have dual immunomodulating effect through regulating the secretion of proinflammatory and anti-inflammatory cytokines, and that serum binding proteins might enhance this activity.  相似文献   

20.
In osteoarthritis (OA), cartilage destruction is associated not only with an imbalance of anabolic and catabolic processes but also with alterations of the cytoskeletal organization in chondrocytes, although their pathogenetic origin is largely unknown so far. Therefore, we have studied possible effects of the proinflammatory cytokine IL-1beta on components of the cytoskeleton in OA chondrocytes on gene expression level. Using a whole genome array, we found that IL-1beta is involved in the regulation of many cytoskeleton-related genes. Apart from well-known cytoskeletal components, the expression and regulation of four genes coding for LIM proteins were shown. These four genes were previously undescribed in the chondrocyte context. Quantitative PCR analysis confirmed significant downregulation of Fhl1, Fhl2, Lasp1, and Pdlim1 as well as Tubb and Vim by IL-1beta. Inhibition of p38 mitogen-activated protein kinase (MAPK) by SB203580 counteracted the influence of IL-1beta on Fhl2 and Tubb expression, indicating partial involvement of this signaling pathway. Downregulation of the LIM-only protein FHL2 was confirmed additionally on the protein level. In agreement with these results, IL-1beta induced changes in the morphology of chondrocytes, the organization of the cytoskeleton, and the cellular distribution of FHL2. We conclude that L-1beta is involved in the regulation of various cytoskeletal components in human chondrocytes including the multifunctional protein FHL2. This might be relevant for the pathogenesis of OA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号