首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An increasing number of studies report that functional divergence in duplicated genes is accompanied by gene expression changes, although the evolutionary mechanism behind this process remains unclear. Our genomic analysis on the yeast Saccharomyces cerevisiae shows that the number of shared regulatory motifs in the duplicates decreases with evolutionary time, whereas the total number of regulatory motifs remains unchanged. Moreover, genes with numerous paralogs in the yeast genome do not have especially low number of regulatory motifs. These findings indicate that degenerative complementation is not the sole mechanism behind expression divergence in yeast. Moreover, we found some evidence for the action of positive selection on cis-regulatory motifs after gene duplication. These results suggest that the evolution of functional novelty has a substantial role in yeast duplicate gene evolution.  相似文献   

2.
R K Mortimer 《Genetics》1969,61(1):Suppl:329-Suppl:334
  相似文献   

3.
Allelic recombination has previously been shown to increase the GC-content of the sequences of a wide variety of eukaryotic species. Ectopic recombination between clustered tandemly repeated genes has also been shown to increase their GC-content. Here we show that gene conversions between the dispersed genes found in the duplicated regions of the yeast and Arabidopsis genomes also increase their GC-content when these genes are more than 88% similar.  相似文献   

4.
5.
Zhang Z  Kishino H 《Genetics》2004,166(4):1995-1999
Gene duplication with subsequent divergence plays a central role in the acquisition of genes with novel function and complexity during the course of evolution. With reduced functional constraints or through positive selection, these duplicated genes may experience accelerated evolution. Under the model of subfunctionalization, loss of subfunctions leads to complementary acceleration at sites with two copies, and the difference in average rate between the sequences may not be obvious. On the other hand, the classical model of neofunctionalization predicts that the evolutionary rate in one of the two duplicates is accelerated. However, the classical model does not tell which of the duplicates experiences the acceleration in evolutionary rate. Here, we present evidence from the Saccharomyces cerevisiae genome that a duplicate located in a genomic region with a low-recombination rate is likely to evolve faster than a duplicate in an area of high recombination. This observation is consistent with population genetics theory that predicts that purifying selection is less effective in genomic regions of low recombination (Hill-Robertson effect). Together with previous studies, our results suggest the genomic background (e.g., local recombination rate) as a potential force to drive the divergence between nontandemly duplicated genes. This implies the importance of structure and complexity of genomes in the diversification of organisms via gene duplications.  相似文献   

6.
7.
8.
Ciliates provide a powerful system to analyze the evolution of duplicated alpha-tubulin genes in the context of single-celled organisms. Genealogical analyses of ciliate alpha-tubulin sequences reveal five apparently recent gene duplications. Comparisons of paralogs in different ciliates implicate differing patterns of substitutions (e.g., ratios of replacement/synonymous nucleotides and radical/conservative amino acids) following duplication. Most substitutions between paralogs in Euplotes crassus, Halteria grandinella and Paramecium tetraurelia are synonymous. In contrast, alpha-tubulin paralogs within Stylonychia lemnae and Chilodonella uncinata are evolving at significantly different rates and have higher ratios of both replacement substitutions to synonymous substitutions and radical amino acid changes to conservative amino acid changes. Moreover, the amino acid substitutions in C. uncinata and S. lemnae paralogs are limited to short stretches that correspond to functionally important regions of the alpha-tubulin protein. The topology of ciliate alpha-tubulin genealogies are inconsistent with taxonomy based on morphology and other molecular markers, which may be due to taxonomic sampling, gene conversion, unequal rates of evolution, or asymmetric patterns of gene duplication and loss.  相似文献   

9.
10.
Gene duplication, arising from region-specific duplication or genome-wide polyploidization, is a prominent feature in plant genome evolution. Understanding the mechanisms generating duplicate gene copies and the subsequent dynamics among gene duplicates is vital because these investigations shed light on regional and genome-wide aspects of evolutionary forces shaping intra- and interspecific genome contents, evolutionary relationships, and interactions. This review discusses recent gene duplication analyses in plants, focusing on the molecular and evolutionary dynamics occurring at three different timescales following duplication: (1). initial establishment and persistence of cytotypes, (2). interactions among duplicate gene copies, and (3). longer term differentiation between duplicated genes. These relative time points are presented in terms of their potential adaptive significance and impact on plant evolutionary genomics research.  相似文献   

11.
If we are to investigate the relationships between genes, which can involve complex combinations of duplication, deletion and speciation, we need precise terminology. The terms 'paralogy' and 'orthology' have proved very useful in distinguishing two different relationships between homologous genes. Some relationships, however, are not included in either of these terms. I propose three new terms, for use in situations in which one or both lineages that lead to two present-day genes involve gene duplications.  相似文献   

12.
Summary In the simple eucaryote Saccharomyces cerevisiae there are at least three phenotypically distinct classes of mutants sensitive to inactivation by radiations and alkylating agents: class I mutants are sensitive to ultraviolet light and nitrogen mustard (HN2); class II mutants are sensitive to X-rays and methylmethane sulphonate (MMS); and class III mutants are sensitive to all four of these agents. We have constructed doubly mutant strains of types (I, I), (I, II), (I, III), and (II, III) and have measured their sensitivity to UV, X-rays, HN2 and MMS in order to characterize the interactions of the various mutant gene pairs. Class (I, III) double mutants proved to be supersensitive to UV and HN2 and class (II, III) double mutants proved to be supersensitive to X-rays and MMS. All other double mutants showed little or no enhancement of sensitivity over their most sensitive single mutant parents. Mutants of class I are known to be defective in excision repair and our results are consistent with the idea that there exist at least two additional pathways for dark repair in yeast, one capable of repairing X-ray and MMS damage to DNA, and another, possibly analogous to post-replication repair in bacteria, that competes with the other two for damaged regions in DNA.  相似文献   

13.
Gene duplication events produce both perfect and imperfect copies of genes. Perfect copies are said to be functionally redundant when knockout of one gene produces no 'scoreable', phenotypic effects. Preserving identical, duplicate copies of genes is problematic as all copies are prone to accumulate neutral mutations as pseudogenes, or more rarely, evolve into new genes with novel functions. We summarise theoretical treatments for the invasion and subsequent evolutionary modification of functionally redundant genes. We then consider the preservation of functionally identical copies of a gene over evolutionary time. We present several models for conserving redundancy: asymmetric mutation, asymmetric efficacy, pleiotropy, developmental buffering, allelic competition and regulatory asymmetries. In all cases, some form of symmetry breaking is required to maintain functional redundancy indefinitely.  相似文献   

14.
Hideki Innan 《Genetica》2009,137(1):19-37
Various population genetic models of duplicated genes are introduced. The problems covered in this review include the fixation process of a duplicated copy, copy number polymorphism, the fates of duplicated genes and single nucleotide polymorphism in duplicated genes. Because of increasing evidence for concerted evolution by gene conversion, this review introduces recently developed gene conversion models. In the first half, models assuming independent evolution of duplicated genes are introduced, and then the effect of gene conversion is considered in the second half.  相似文献   

15.
Divergence in expression between duplicated genes in Arabidopsis   总被引:2,自引:0,他引:2  
New genes may arise through tandem duplication, dispersed small-scale duplication, and polyploidy, and patterns of divergence between duplicated genes may vary among these classes. We have examined patterns of gene expression and coding sequence divergence between duplicated genes in Arabidopsis thaliana. Due to the simultaneous origin of polyploidy-derived gene pairs, we can compare covariation in the rates of expression divergence and sequence divergence within this group. Among tandem and dispersed duplicates, much of the divergence in expression profile appears to occur at or shortly after duplication. Contrary to findings from other eukaryotic systems, there is little relationship between expression divergence and synonymous substitutions, whereas there is a strong positive relationship between expression divergence and nonsynonymous substitutions. Because this pattern is pronounced among the polyploidy-derived pairs, we infer that the strength of purifying selection acting on protein sequence and expression pattern is correlated. The polyploidy-derived pairs are somewhat atypical in that they have broader expression patterns and are expressed at higher levels, suggesting differences among polyploidy- and nonpolyploidy-derived duplicates in the types of genes that revert to single copy. Finally, within many of the duplicated pairs, 1 gene is expressed at a higher level across all assayed conditions, which suggests that the subfunctionalization model for duplicate gene preservation provides, at best, only a partial explanation for the patterns of expression divergence between duplicated genes.  相似文献   

16.
The genome of Saccharomyces cerevisiae contains several duplicated regions. The recent sequencing results of several yeast species suggest that the duplicated regions found in the modern Saccharomyces species are probably the result of a single gross duplication, as well as a series of sporadic independent short-segment duplications. The gross duplication might coincide with the origin of the ability to grow under anaerobic conditions.  相似文献   

17.
Updated map of duplicated regions in the yeast genome   总被引:14,自引:0,他引:14  
Seoighe C  Wolfe KH 《Gene》1999,238(1):253-261
We have updated the map of duplicated chromosomal segments in the Saccharomyces cerevisiae genome originally published by Wolfe and Shields in 1997 (Nature 387, 708-713). The new analysis is based on the more sensitive Smith Waterman search method instead of BLAST. The parameters used to identify duplicated chromosomal regions were optimized such as to maximize the amount of the genome placed into paired regions, under the assumption that the hypothesis that the entire genome was duplicated in a single event is correct. The core of the new map, with 52 pairs of regions containing three or more duplicated genes, is largely unchanged from our original map. 39 tRNA gene pairs and one snRNA pair have been added. To find additional pairs of genes that may have been formed by whole genome duplication, we searched through the parts of the genome that are not covered by this core map, looking for putative duplicated chromosomal regions containing only two duplicate genes instead of three, or having lower-scoring gene pairs. This approach identified a further 32 candidate paired regions, bringing the total number of protein-coding genes on the duplication map to 905 (16% of the proteome). The updated map suggests that a second copy of the ribosomal DNA array has been deleted from chromosome IV.  相似文献   

18.
Lin H  Zhu W  Silva JC  Gu X  Buell CR 《Genome biology》2006,7(5):R41-11

Background  

Introns are under less selection pressure than exons, and consequently, intronic sequences have a higher rate of gain and loss than exons. In a number of plant species, a large portion of the genome has been segmentally duplicated, giving rise to a large set of duplicated genes. The recent completion of the rice genome in which segmental duplication has been documented has allowed us to investigate intron evolution within rice, a diploid monocotyledonous species.  相似文献   

19.
Using a phylogenetic approach, the examination of 33 meiosis/meiosis-related genes in 12 Drosophila species, revealed nine independent gene duplications, involving the genes cav, mre11, meiS332, polo and mtrm. Evidence is provided that at least eight out of the nine gene duplicates are functional. Therefore, the rate at which Drosophila meiosis/meiosis-related genes are duplicated and retained is estimated to be 0.0012 per gene per million years, a value that is similar to the average for all Drosophila genes. It should be noted that by using a phylogenetic approach the confounding effect of concerted evolution, that is known to lead to overestimation of the duplication and retention rate, is avoided. This is an important issue, since even in our moderate size sample, evidence for long-term concerted evolution (lasting for more than 30 million years) was found for the meiS332 gene pair in species of the Drosophila subgenus. Most striking, in contrast to theoretical expectations, is the finding that genes that encode proteins that must follow a close stoichiometric balance, such as polo, mtrm and meiS332 have been found duplicated. The duplicated genes may be examples of gene neofunctionalization. It is speculated that meiosis duration may be a trait that is under selection in Drosophila and that it has different optimal values in different species.  相似文献   

20.
Theories for analyzing polymorphism data in duplicated genes   总被引:3,自引:0,他引:3  
A simple model for the evolutionary process of a pair of duplicated genes under concerted evolution is developed. The model considers mutation, recombination and gene conversion between two genes in a finite population. Based on diffusion theory, the expected amount of DNA variation within and between two genes are obtained. To investigate the pattern of DNA polymorphism, a coalescent tool to simulate patterns of polymorphism is developed. The theoretical results are well in agreement with polymorphism data in duplicated genes. The effect of selection on the pattern of polymorphism is also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号