首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, the B-->Z transition of poly(dG-dC).poly(dG-dC) and the B-->A transition of poly(dG).poly(dC) and of calf thymus (CT) DNA fragments modified by antitumor bifunctional polynuclear platinum complexes were investigated by circular dichroism (CD). The transition from the B- to Z-form of DNA was inducible with all three compounds studied, as indicated by an inversion of the B-form spectra. The B-->A transition in poly(dG).poly(dC) was induced easily by platinum complex binding alone, while the B-->A transition in CT DNA was induced by ethanol but inhibited by coordination of all polynuclear platinum compounds used here. It was shown that the compound [?cis-PtCl(NH3)2?2 mu-?H2N(CH2)6NH2?] (NO3)2 (1,1/c,c) was most effective at inhibiting the B-->A transition in CT DNA, and [?trans-PtCl(NH3)2?2 mu-?trans-Pt(NH3)2(H2N(CH2)6NH2)2?] (NO3)4 (1,0,1/t,t,t) was least effective, while the effectiveness of [?trans-PtCl(NH3)2?2 mu-?H2N(CH2)6NH2?] (NO3)2 (1,1/t,t) fell between the two. This corresponded to the relative amounts of interstrand crosslinks in double-stranded DNA caused by each compound.  相似文献   

2.
Interaction of novel bis(platinum) complexes with DNA.   总被引:1,自引:2,他引:1       下载免费PDF全文
Bis(platinum) complexes [[cis-PtCl2(NH3)]2H2N(CH2)nNH2] are a novel series of potential anticancer agents in which two cis-diamine(platinum) groups are linked by an alkyldiamine of variable length. These complexes are potentially tetrafunctional, a unique feature in comparison with known anticancer agents. Studies of DNA interactions of bis(platinum) complexes in comparison with cisplatin demonstrate significant differences. Investigations of interstrand crosslink formation in which crosslinking of a short DNA fragment is detected by gel electrophoresis under denaturing conditions demonstrate that interstrand crosslinks are 250 fold more frequent among bis(platinum) adducts than among cisplatin-derived adducts under the conditions examined. These investigations indicate that bis(platinum) adducts contain a high frequency of structurally novel interstrand crosslinks formed through binding of the two platinum centers to opposite DNA strands. Unlike cisplatin, bis(platinum) complex binding does not unwind supercoiled DNA. Studies with the E. coli UvrABC nuclease complex demonstrate that both linear and supercoiled DNA containing bis(platinum) adducts are subject to incision by the repair enzyme complex. Initial studies using UvrABC nuclease as a probe to define the base and sequence specificity for bis(platinum) complex binding suggest that the specificity of the bis(platinum)s is similar, but not identical, to that of cisplatin.  相似文献   

3.
In this work, the reversibility of both the B-->Z and B-->A conformational change in polymer DNA induced by polynuclear platinum compounds was studied. The compounds examined were: [[trans-PtCl(NH(3))(2)](2)[NH(2) (CH(2))(6)NH(2)]](2+) (BBR3005); [[trans-PtCl(NH(3))(2)](2)[mu-spermine-N1,N12]](4+) (BBR3535); [[trans-PtCl(NH(3))(2)](2)[mu-spermidine-N1,N8]](3+) (BBR3571); [[trans-PtCl(NH(3))(2)](2)[mu-BOC-spermidine]](2+) (BBR3537); and [[trans-PtCl(NH(3))(2)](2)[mu-trans-Pt(NH(3))(2)(H(2)N(CH(2))(6)NH(2))(2)]](4+) (BBR3464). The conformational changes were assessed by circular dichroism and the reversibility of the transitions was tested by subsequent titration with the DNA intercalator ethidium bromide (EtBr). Fluorescent quenching was also used to assess the ability of ethidium bromide to intercalate into A and/or Z-DNA induced by the compounds. The results were compared with those produced by the simple hexamminecobalt cation [Co(NH(3))(6)](3+). The data suggest that while conformational changes induced by electrostatic interactions are confirmed to be reversible, covalent binding induces irreversible changes in both the A and Z conformation. The relevance of these changes to the novel biological action of polynuclear platinum compounds is discussed.  相似文献   

4.
Polynuclear platinum compounds demonstrate many novel phenomena in their interactions with DNA and proteins as well as novel anti-cancer activities. Previous studies indicated that the high positive charge and the non-coordinated "central linker" of the polynuclear compounds could have major contributions to these features. Therefore, a series of non-covalent polynuclear platinum complexes, [[Pt(NH(3))(3)](2)-mu-Y](n+) (Y=polyamine linker or [trans-Pt(NH(3))(2)(H(2)N(CH(2))(6)NH(2))(2)]) was synthesized and the DNA interactions of these platinum complexes were investigated. The conformational changes induced by these compounds in polymer DNA were studied by circular dichroism and the reversibility of the transition was tested by subsequent titration with the DNA intercalating agent ethidium bromide (EtBr). Fluorescent quenching was also used to assess the ability of EtBr to intercalate into A and Z-DNA induced by the compounds. The non-covalent polynuclear platinum complexes induced both B-->A and B-->Z conformational changes in polymer DNA. These conformational changes were partially irreversible. The platinum compound with the spermidine linker, [[Pt(NH(3))(3)](2)-mu-spermidine-N(1),N(8)]Cl(5).2H(2)O, is more efficient in inducing the conformational changes of DNA and it is less reversible than complexes with other linkers. The melting point study showed that the non-covalent polynuclear platinum complexes stabilized the duplex DNA and the higher the electrical charge of the complexes the greater the stabilization observed.  相似文献   

5.
The interaction of enantiomerically pure dinuclear complexes of the form [Ru2(L-L)4L1]4+ (where L-L = 2,2-bipyridine (bpy) or 1,10-phenanthroline (phen) and L1 = bis(pyridylimine) ligand ((C5H4N)CN(C6H4))2CH2)) with ct-DNA have been investigated by absorbance, circular dichroism, fluorescence displacement assays, thermal analysis, linear dichroism and gel electrophoresis. The complexes all bind more strongly to DNA than ethidium bromide, stabilise DNA and have a significant bending effect on DNA. The data for Δ,Δ-[Ru2(bpy)4L1]4+ are consistent with it binding to DNA outside the grooves wrapping the DNA about it. By way of contrast the other complexes are groove-binders. The phen complexes provide a chemically and enantiomerically stable alternative to the DNA-coiling di-iron triple-helical cylinder previously studied. In contrast to the di-iron helicates, the phen complexes show DNA sequence effects with Δ,Δ-[Ru2(phen)4L1]4+ binding preferentially to GC and Λ,Λ-[Ru2(phen)4L1]4+ to AT.  相似文献   

6.
Metal complexes that establish interactions with DNA are being studied not only because of their potential use as therapeutic agents but also as tools for biochemistry and molecular biology. Searching for drugs with anti-trypanosome activity, we previously synthesized a series of ruthenium mixed ligand dimethyl sulfoxide complexes of the type [Ru(II)Cl(2)(DMSO)(2)L], where L is 5-nitrofurylsemicarbazone derivatives and DMSO is dimethyl sulfoxide. Though they present the ability to bind DNA, no activity against parasites in cell culture was observed. Considering their potential application as molecular tools we further analyzed the interactions with DNA through an electrophoretic approach. Non covalent withdrawal of superhelicity and a rapid nicking activity upon covalent interaction was observed. Inhibition of both effects was observed in the presence of distamycin suggesting the involvement of the DNA minor groove in the interaction with the nitrofurylsemicarbazone ruthenium complexes. In addition cleavage inhibition by dimethyl sulfoxide suggests an oxidative mechanism of action.  相似文献   

7.
《Inorganica chimica acta》2005,358(5):1365-1372
We have synthesized a series of dinuclear gold(I) derivatives with the diphosphane bis(diphenylphosphano)acetylene, namely [(AuX)2(μ-dppa)] (X=Cl, C6F5, SC6F5, S2CN(CH2Ph)2). X-ray structure determinations for the first three derivatives reveal a linear geometry for the gold centres. There are no intramolecular gold-gold interactions, although for X=Cl intermolecular gold(I)-gold(I) interactions of 3.0694(4) Å lead to an infinite twisted chain; the further presence of C-H?Cl contacts leads to a more complex three-dimensional structure. All the derivatives are luminescent in the solid state at low temperature in the range 455-593 nm; most of them are emissive at room temperature in the range 470-598 nm. We have also prepared the dinuclear gold(III) derivative [(Au(C6F5)3)2(μ-dppa)]. Finally, we have prepared the derivative [(AuCl)2(μ-dppa)3], which forms a cage with two tetrahedrically coordinated gold(I) centres at the apical positions bridged by three rigid diphosphane ligands, with a helical twist of 26.2°, and a gold-gold distance of 5.769 Å. The gold(III) and the four-coordinate gold(I) derivatives are not luminescent.  相似文献   

8.
A new chiral ligand, 2-(((1R,2R)-2-aminocyclohexyl)amino)acetic acid (HL), was designed and synthesized to prepare a series of novel dinuclear platinum(II) complexes with dicarboxylates or sulfate as bridges. The evaluation of these metal complexes in vitro cytotoxicity against human HCT-116, MCF-7 and HepG-2 cell lines were made. All compounds showed antitumor activity to HCT-116 and MCF-7. Particularly, compounds M3 and M5 not only exhibited better activity than carboplatin against MCF-7 and HepG-2, but also showed very close activity to oxaliplatin against HCT-116.  相似文献   

9.
Oxaliplatin is a third generation platinum (Pt) drug with a diaminocyclohexane (DACH) entity, which has recently obtained worldwide approval for the clinical treatment of colon cancer, and apparently operates by a different mechanism of action to the classical cisplatin or carboplatin. Introducing a novel dual mechanism of action is one approach in designing a new platinum-based anticancer agent, whereby an appropriate ligand, such as demethylcantharidin (DMC), is released from the parent compound to exert a cytotoxic effect, in addition to that of the DNA-alkylating function of the platinum moiety. To investigate the likelihood of a novel dual mechanism of anticancer action, demethylcantharidin-integrated Pt complexes: Pt(R,R-DACH)(DMC) with the same Pt-DACH moiety as oxaliplatin, and Pt(NH(3))(2)(DMC) akin to carboplatin; were studied for their ability to induce DNA damage in HCT116 colorectal cancer cells by an alkaline comet assay. The results showed that the DMC ligand released from the novel complexes caused additional DNA lesions when compared with oxaliplatin and carboplatin. The comet assay also revealed that the DNA-damaging behavior of cisplatin is characteristically different; and this study is the first to demonstrate the ability of DMC to induce DNA lesions, thus providing sufficient evidence to explain the superior antiproliferative effect of the novel DMC-integrated complexes.  相似文献   

10.
11.
Bis[platinum(II)] [Cl2Pt(LL)PtCl2] complexes 2,5 and 8 with chiral non-racemic ligands: 1a-c (LL = (R,R), (S,S) and (R,S) N,N'-bis(3,4-diaminobutyl)hexanediamide); 4a,b (LL = (R,R) and (S,S) N,N'-bis[3,4-bis(diaminobutyl)] urea); 7a-d (LL' = (R,R), (S,S), (R,S) and (S,R) 4,5-diamino-N-(3,4-diaminobutyl) pentanamide) and bis[platinum(IV)] complex 10-13 with ligands 1a,b and 4a,b have been prepared and characterized by IR, 1H, 13C and 195Pt NMR spectra. The interactions of 2a-c, 5a, 5b, 8a-d and 10a with dsDNA were investigated with the goal of examining whether the chirality, the nature of the spacer and the oxidation state have an influence on platinum-DNA binding properties. All the bis[platinum(II)] complexes form with dsDNA intra- and interstrand crosslinks and crosslinks over sticky ends, whereas the bis[platinum(IV)] complex 10a only forms intra- and interstrand crosslinks. The platinum-DNA coordination sites were determined by the T4 DNA polymerase footprinting method. The results show that all investigated bis(platinum) complexes have high preference towards distinct purines. All isomeric bis(amide) 2a-c and mono(amide) 8a-d complexes exhibit nearly the same binding pattern, whereas the ureide complexes 5a and 5b have other coordination sites with higher sequence preference. Interestingly, the ureides 5a and 5b differ in their coordination sites not only in comparison to the bis(amides) 2a-c and mono(amides) 8a-d, but also between each other. The bis[platinum(IV)] complex 10a also differs in coordination sites in comparison to all the bis[platinum(II)] compounds.  相似文献   

12.
The interactions of four antitumor azolato-bridged dinuclear platinum(II) complexes, [{cis-Pt(NH(3))(2)}(2)(μ-OH)(μ-azolato)](2+), with calf thymus DNA were monitored dose- and time-dependently, by using circular dichroism. Complexes 1-4 reacted with DNA via a two-step interaction that comprised a prompt diffusion-controlled reaction, which induced a B- to C-form transition, and a relatively slow temperature-dependent reaction.  相似文献   

13.
Modification of DNA and double-stranded deoxyoligonucleotides with antitumour 1,2-diamino-cyclohexanedinitroplatinum(II) (Pt-dach) complexes was investigated with the aid of physico-chemical methods and chemical probes of nucleic acid conformation. The three Pt-dach complexes were used which differed in isomeric forms of the dach nonleaving ligand-Pt(1R,2R-dach), Pt(1S,2S-dach) and Pt(1R,2S-dach) complexes. The latter complex has lower antitumour activity than the other two Pt-dach complexes. Pt(1R,2S-dach) complex exhibits the slowest kinetics of its binding to DNA and of the conversion of monofunctional binding to bifunctional lesions. The anomalously slow electrophoretic mobility of multimers of the platinated and ligated oligomers suggests that bifunctional binding of Pt-dach complexes to a d(GG) site within double-stranded oligonucleotides induces bending of the oligomer. In addition, chemical probing of double-helical deoxyoligonucleotides modified by the Pt-dach complexes at the d(GG) sites reveals that Pt(1R,2S-dach) complex induces more extensive conformational changes in the oligomer than Pt(1R,2R-dach) and Pt(1S,2S-dach) complexes. It is proposed that different effects of the Pt-dach complexes on DNA observed in this work arise mainly from a steric crowding of the axially oriented cyclohexane ring in the DNA adduct of Pt(1R,2S-dach) complex.  相似文献   

14.
The cytotoxic dinuclear platinum(II) complexes [[cis-Pt(NH(3))(2)](2)(mu-OH)(mu-pz)](NO(3))(2) (pz=pyrazolate) (1) and [[cis-Pt(NH(3))(2)](2)(mu-OH)(mu-1,2,3-ta-N1,N2)](NO(3))(2) (1,2,3-ta=1,2,3-triazolate) (2), were allowed to react with the hairpin-stabilized double-stranded oligonucleotide d(TATGGCATT(4)ATGCCATA), to determine the amounts of intrastrand and interstrand DNA adducts. The reaction kinetics was investigated by reversed-phase HPLC, and the resulting products were analyzed using mass spectroscopy combined with enzymatic digestion, and Maxam-Gilbert sequencing. The reaction of 1 results in the formation of the 1,2-intrastrand d(GG) adduct as the major final product. The two most abundant products of 2 were identified as isomeric 1,2-intrastrand d(GG) adducts differing probably in platinum coordination to the triazole ring. No GG-interstrand crosslinks were detected with either compound. d(GGC)-d(GCC) sequences of DNA do thus not appear to represent significant targets for forming interstrand crosslinks with either 1 or 2.  相似文献   

15.
V Brabec  J Reedijk  M Leng 《Biochemistry》1992,31(49):12397-12402
The effects on thermal stability and conformation of DNA produced by the monofunctional adducts of chlorodiethylenetriamineplatinum(II) chloride ([Pt(dien)Cl]Cl) have been investigated. Oligodeoxyribonucleotide duplexes of varying lengths (9-20 base pairs) and of varying central trinucleotide sequences were prepared and characterized that contained site-specific and unique N(7)-guanine adducts. Included are adducts at the sequences of d(AGC), d(AGT), d(CGA), d(TGA), d(TGC), and d(TGT). All these monofunctional adducts decrease the melting temperature (Tm) of the duplexes. This destabilization effect exhibits a sequence-dependent variability. The highest lowering of Tm is observed for the modified duplexes containing the central sequence of pyrimidine-guanine-pyrimidine. The destabilization effect is reduced with decreasing concentrations of Na+. Polarography, circular dichroism, phenanthroline-copper, and chemical probes reveal conformational distortions spreading over several base pairs around the adduct. The effects of monofunctional platinum(II) adducts on conformational distortions in DNA exhibit a sequence-dependent variability similar to those on thermal stability of DNA. The influence of the monofunctional adduct formed by cis-diamminemonoaquamonochloroplatinum(II) on the stability of the oligonucleotide duplex has been also studied. This lesion decreases thermal stability of DNA in the same way as does the adduct of [Pt(dien)Cl]Cl.  相似文献   

16.
Six dinuclear platinum(II) complexes with a chiral tetradentate ligand, (1R,1′R,2R,2′R)-N1,N1′-(1,4-phenylenebis(methylene))dicyclohexane-1,2-diamine, have been designed, synthesized and characterized. In vitro cytotoxicity evaluation of these metal complexes against human A549, HCT-116, MCF-7 and HepG-2 cell lines have been carried out. All compounds showed antitumor activity to HepG-2, HCT-116 and A549. Particularly, compounds A1 and A2 exhibited significant better activity than other four compounds and A2 even showed comparable cytotoxicity to cisplatin against HepG-2 cell line.  相似文献   

17.
Three novel inosine-based dinuclear platinum complexes have been synthesized via a solid-phase strategy. In these compounds, the metal is linked both to the N-7 of the purine nucleus and to the terminal amine group of a hexylamine side chain installed on N-1. Cis- or trans- diamine as well as ethylenediamine ligands are coordinated to platinum along with a chloride. The synthesised complexes were tested against four different human tumor cell lines. One of these complexes proved to be more cytotoxic than cisplatin against the MCF7 cancer cell line in a short-term exposure assay.  相似文献   

18.
Five dinuclear platinum(II) complexes with a novel chiral ligand, 2-(((1R,2R)-2-aminocyclohexylamino)methyl)phenol (HL), were designed, prepared and spectrally characterized. In vitro cytotoxicity of all the resulting platinum(II) compounds was evaluated against human HEPG-2, A549 and HCT-116 cell lines, respectively. Results indicated that all compounds showed positive biological activity. Particularly, compound D4 has lower IC50 values than carboplatin toward HEPG-2 and A549, while compound D5 shows better activity than carboplatin against A549.  相似文献   

19.
The binding of platinum (II)-terpyridine complexes to DNA was studied by using equilibrium dialysis. Optical absorption methods were used to measure the ability of the ligands to aggregate in aqueous buffer. Scatchard plots for the binding of the monomeric [Pt(terpy)SC4H9]+ cation to DNA at I0.01 are curvilinear, concave upwards, suggesting two modes of binding. The association constant decreases at higher ionic strengths, consistent with polyelectrolyte theory, and 1.1 cations are released per bound ligand molecule. The association constants of the binuclear ligands [Pt(terpy)S[CH2]4S(terpy)Pt]2+ and [Pt(terpy)S[CH2]6S(terpy)Pt]2+ are 8 and 23 times larger respectively than the affinity of the monomer. For the latter binuclear derivative the increase may be ascribed to bifunctional reaction. Differential dialysis experiments with DNAs of differing base composition show that [Pt(terpy)SC4H9]+ has a requirement for a single G X C base-pair at the highest-affinity site. However, in the binuclear ligands chromophore specificity is severely compromised. Similar experiments indicate that 9-aminoacridine and selected methylene-linked diacridines show no significant sequence selectivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号