首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interface electric polarizability of bacteria (charge dependent (ChD) and Maxwell-Wagner (MW) polarizabilities) gives information about their electric charge, determined by the structure and functional state. It is well known that the polarizability could be changed significantly by adding some substances to the suspension, and can be measured using an electro-optical (EO) method. There are some literature data, according to which the adding of ethanol decreases the electric polarizability of the cells. However the reason for the change in this parameter is not clear, as well as which component (ChD and/or MW) of polarizability has the main contribution. Generally the present work shows that the effect of ethanol is connected to the change of the internal (cytoplasm) MW polarizability and is mainly caused by increasing the cell membrane permeability. This results in an ionic flow through the membrane, which velocity and direction depends on the relative values of the inner (cytoplasm) and the outer medium ionic strength.  相似文献   

2.
It is becoming apparent that several intracellular bacterial pathogens of humans can also survive within protozoa. This interaction with protozoa may protect these pathogens from harsh conditions in the extracellular environment and enhance their infectivity in mammals. This relationship has been clearly established in the case of the interaction between Legionella pneumophila and its protozoan hosts. In addition, the adaptation of bacterial pathogens to the intracellular life within the primitive eukaryotic protozoa may have provided them with the means to infect the more evolved mammalian cells. This is evident from the existence of several similarities, at both the phenotypic and the molecular levels, between the infection of mammalian and protozoan cells by L. pneumophila . Thus, protozoa appear to play a central role in the transition of bacteria from the environment to mammals. In essence, protozoa may be viewed as a 'biological gym', within which intracellular bacterial pathogens train for their encounters with the more evolved mammalian cells. Thus, intracellular bacterial pathogens have benefited from the structural and biochemical conservation of cellular processes in eukaryotes. The interaction of intracellular bacterial pathogens and protozoa highlights this conservation and may constitute a simplified model for the study of these pathogens and the evolution of cellular processes in eukaryotes. Furthermore, in addition to being environmental reservoirs for known intracellular pathogens of humans and animals, protozoa may be sources of emerging pathogenic bacteria. It is thus critical to re-examine the relationship between bacteria and protozoa to further our understanding of current human bacterial pathogenesis and, possibly, to predict the appearance of emerging pathogens.  相似文献   

3.
Representatives of several categories of bacteria were added to soil to determine which of them might elicit responses from the soil protozoa. The various categories were nonobligate bacterial predators of bacteria, prey bacteria for these predators, indigenous bacteria that are normally present in high numbers in soil, and non-native bacteria that often find their way in large numbers into soil. The soil was incubated and the responses of the indigenous protozoa were determined by most-probable-number estimations of total numbers of protozoa. Although each soil was incubated with only one species of added bacteria, the protozoan response for the soil was evaluated by using most-probable-number estimations of several species of bacteria. The protozoa did not respond to incubation of the soil with either Cupriavidus necator, a potent bacterial predator, or one of its prey species, Micrococcus luteus. C. necator also had no effect on the protozoa. Therefore, in this case, bacterial and protozoan predators did not interact, except for possible competition for bacterial prey cells. The soil protozoa did not respond to the addition of Arthrobacter globiformis or Bacillus thuringiensis. Therefore, the autochthonous state of Arthrobacter species in soil and the survival of B. thuringiensis were possibly enhanced by the resistance of these species to protozoa. The addition of Bacillus mycoides and Escherichia coli cells caused specific responses by soil protozoa. The protozoa that responded to E. coli did not respond to B. mycoides or any other bacteria, and vice versa. Therefore, addition to soil of a nonsoil bacterium, such as E. coli, did not cause a general increase in numbers of protozoa or in protozoan control of the activities of other bacteria in the soil.  相似文献   

4.
The influence of nature of the feed sample, feeding frequency and pore size on the influx of bacteria and protozoa into synthetic fiber bags suspended in the rumens of sheep fed different diets was studied. Counts of total culturable bacteria in bags with a pore size of 10 microns were less than 30% of the ruminal counts for animals that were fed the lucerne hay and high-roughage diets. The maximum count (62 and 82% of the ruminal count) for these specific diets was obtained by using bags with a pore size of 53 microns. Protozoal counts in bags with pore sizes of 30 and 53 microns were equal to or higher than the ruminal counts for the lucerne hay and high-roughage diets but less than half of the ruminal count for the low-roughage diet. An interaction between incubation time, feeding frequency of the host animals, and the microbial populations developing inside the bags was also demonstrated. The results clearly show that the microbial population inside the bag differed from that of the surrounding ruminal ingesta and that caution must be taken in interpreting results on feed evaluation and especially on rates of degradation when using the in sacculus technique. Factors influencing the influx of bacteria and protozoa into bags with different pore sizes and containing a variety of substrates are discussed together with suggestions for the use of this technique.  相似文献   

5.
An individual-based model has been developed and designed to simulate the growth and behaviour of bacterial colonies. The simulator is called INDISIM, which stands for INDividual DIScrete SIMulations. INDISIM is discrete in space and time, and controls a group of bacterial cells at each time step, using a set of random, time-dependent variables for each bacterium. These variables are used to characterize its position in space, biomass, state in the cellular reproduction cycle as well as other individual properties. The space where the bacterial colony evolves is also discrete. A physical lattice is introduced, subject to the appropriate boundary conditions. The lattice is subdivided into spatial cells, also defined by a set of random, time-dependent variables. These variables may include concentrations of different types of particles, nutrients, reaction products and residual products. Random variables are used to characterize the individual bacterium and the individual particle, as well as the updating of individual rules. Thus, the simulations are stochastic rather than deterministic. The whole set of variables, those that characterize the bacterial population and the environment where they evolve, enables the simulator to study the behaviour of each microorganism-such as its motion, uptake, metabolism, and viability-according to given rules suited for the system under study. These rules require the input of only a few parameters. Once this information is inputted, INDISIM simulates the behaviour of the system providing insights into the global properties of the system from the assumptions made on the properties of the individual bacteria. The relation between microscopic and global properties of the bacterial colony is obtained by using statistical averaging. In this work INDISIM has been used to study (a) biomass distributions, (b) the relationship between the rate of growth of a bacterial colony and the nutrient concentration and temperature, and (c) metabolic oscillations in batch bacterial colonies. The simulation results are found to be in very good qualitative agreement with available experimental data, and provide useful insights into the mechanisms involved in each case.  相似文献   

6.
The human brain may be regarded as an irreversible system which is constrained by a fixed inflow of free energy in the form of chemical nourishment from within the body and information from the environment. The evolution of the internal spontaneous process may be described as a path on the saddle surface of entropy production rate in the configuration space of the process variables. From any initial state of high entropy production the system evolves towards the saddle point by a series of regessions to temporary minima alternating with fluctuations which introduce new internal constraints and open new channels for regression. The spontaneous regression steps of the process are to be associated with the learning process and the deductive processes of thought since information is necessarily being stored, whereas the fluctuation or nucleation steps are to be associated with the inductive or creative part of the thought process. The state of consciousness is to be associated with the system undergoing regression. If, under certain boundary conditions, the system attains the stable saddle point, a state of unconsciousness is attained in which no change of state variables occurs in time. The stability of this state is indicated by its resistance to perturbation.  相似文献   

7.
The influence of the physical state of the membrane on the swimming behaviour of Tetrahymena pyriformis was studied in cells with lipid-modified membranes. When the growth temperature of Tetrahymena cells was increased from 15 degrees C to 34 degrees C or decreased from 39 degrees C to 15 degrees C, their swimming velocity changed gradually in a similar to the adaptive change in membrane lipid composition. Therefore, such adaptive changes in swimming velocity were not observed during short exposures to a different environment. Tetrahymena cells adapted to 34 degrees C swam at 570 microns/s. On incubation at 15 degrees C these cells swam at 100 microns/s. When the temperature was increased to 34 degrees C after a 90-min incubation at 15 degrees C, the initial velocity was immediately recovered. On replacement of tetrahymanol with ergosterol, the swimming velocity of 34 degrees C-grown cells decreased to 210 microns/s, and the cells ceased to move when the temperature was decreased to 15 degrees C. To investigate the influence of the physical state of the membrane on the swimming velocity, total phospholipids were prepared from Tetrahymena cells grown under these different conditions. The fluidities of liposomes of these phospholipid were measured using stearate spin probe. The membrane fluidity of the cells cooled to 15 degrees C increased gradually during incubation at 15 degrees C. On the other hand, the fluidity of the heated cell decreased during incubation at 34 degrees C. Replacement of tetrahymanol with ergosterol decreased the membrane fluidity markedly. Consequently, a good correlation was observed between swimming velocity and membrane fluidity; as the membrane fluidity increased, the swimming velocity increased linearly up to 600 microns/s. These results provide evidence for the regulation of the swimming behaviour by physical properties of the membrane.  相似文献   

8.
Blackburn N  Fenchel T 《Protist》1999,150(3):337-343
A model of protozoan chemotaxis, based on the rate of change of chemoreceptor occupancy, was used to analyse the efficiency of chemotaxis in a variety of situations. Simulated swimming behaviour replicated patterns observed experimentally. These were classified into three forms of chemosensory behaviour; run-tumble, steered turning, and helical klinotaxis. All three could be simulated from a basic model of chemotaxis by modifying memory times and rotational velocities. In order to steer during helical klinotaxis, the cell must have a short term memory for responding to a signal within a fraction of the time period of the helix. Steered turning was identified as a form where cells react to negative changes in concentration by steering around the turn to swim back up the gradient. All 3 forms were quite effective for encountering targets within the response radius. A response to negative changes in concentration, experienced when the cell is moving away from a target, was found to be important in the absence of periodic changes in swimming direction. The frequency of patch encounter at a fixed density was calculated to be roughly proportional to swimming speed. On the basis of the model, cells are only able to sense point sources within a radius of a few mm. However, even a response radius of 1 mm is enough to increase encounter probability of otherwise minute targets by 2 orders of magnitude. The mean time for patch encounter was calculated to be an exponential function of the mean distance between patches. This results in a very sharp threshold at approximately 6 cm, above which they are not encountered by protozoa within time periods of several days.  相似文献   

9.
Stochastic dynamic programming (SDP) models are widely used to predict optimal behavioural and life history strategies. We discuss a diversity of ways to test SDP models empirically, taking as our main illustration a model of the daily singing routine of birds. One approach to verification is to quantify model parameters, but most SDP models are schematic. Because predictions are therefore qualitative, testing several predictions is desirable. How state determines behaviour (the policy) is a central prediction that should be examined directly if both state and behaviour are measurable. Complementary predictions concern how behaviour and state change through time, but information is discarded by considering behaviour rather than state, by looking only at average state rather than its distribution, and by not following individuals. We identify the various circumstances in which an individual's state/behaviour at one time is correlated with its state/behaviour at a later time. When there are several state variables the relationships between them may be informative. Often model parameters represent environmental conditions that can also be viewed as state variables. Experimental manipulation of the environment has several advantages as a test, but a problem is uncertainty over how much the organism's policy will adjust. As an example we allow birds to use different assumptions about how well past weather predicts future weather. We advocate mirroring planned empirical investigations on the computer to investigate which manipulations and predictions will best test a model. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

10.
BACKGROUND: The presently available cell motility-analyzers measure primarily the "horizontal" velocity and there is no instrument available for "vertical" velocity measurement. This development was based on the turbidimetric method of sperm motility analysis. METHODS: Sperm was layered at the bottom of the cuvette containing buffer solution and exposed to the spectrophotometric light path at different heights to track the vertically moving sperms. The vertical movement was materialized with the development of an electromechanical up-down movement devise for the cuvette accomplished with the help of a cuvette holder-stepper motor-computer assembly. The entire system was controlled by the necessary motion control, data acquisition, and data processing software developed for cuvette movement and data analysis. RESULTS: Using goat sperm as the model a unique computer-based spectrophotometric system has been developed for the first time to determine the average "vertical" velocity of motile cells. CONCLUSIONS: Undertaking upward movement against gravity is much tougher as compared with horizontal movement. Consequently average vertical velocity is expected to be a much better identifying parameter for assessing semen and other motile cell quality. The novel instrumental system developed by us has thus the potential for immense application in human infertility clinics, animal-breeding centres, centres for conservation of endangered species, and also for research work on vertical velocity of spermatozoa and other motile cells, such as bacteria, protozoa, etc.  相似文献   

11.
The influence of nature of the feed sample, feeding frequency and pore size on the influx of bacteria and protozoa into synthetic fiber bags suspended in the rumens of sheep fed different diets was studied. Counts of total culturable bacteria in bags with a pore size of 10 microns were less than 30% of the ruminal counts for animals that were fed the lucerne hay and high-roughage diets. The maximum count (62 and 82% of the ruminal count) for these specific diets was obtained by using bags with a pore size of 53 microns. Protozoal counts in bags with pore sizes of 30 and 53 microns were equal to or higher than the ruminal counts for the lucerne hay and high-roughage diets but less than half of the ruminal count for the low-roughage diet. An interaction between incubation time, feeding frequency of the host animals, and the microbial populations developing inside the bags was also demonstrated. The results clearly show that the microbial population inside the bag differed from that of the surrounding ruminal ingesta and that caution must be taken in interpreting results on feed evaluation and especially on rates of degradation when using the in sacculus technique. Factors influencing the influx of bacteria and protozoa into bags with different pore sizes and containing a variety of substrates are discussed together with suggestions for the use of this technique.  相似文献   

12.
Soil protozoa are characterized by their ability to produce cysts, which allows them to survive unfavorable conditions (e.g., desiccation) for extended periods. Under favorable conditions, they may rapidly excyst and begin feeding, but even under optimal conditions, a large proportion of the population may be encysted. The factors governing the dynamics of active and encysted cells in the soil are not well understood. Our objective was to determine the dynamics of active and encysted populations of ciliates during the decomposition of freshly added organic material. We monitored, in soil microcosms, the active and total populations of ciliates, their potential prey (bacteria and small protozoa), their potential competitors (amoebae, flagellates, and nematodes), and their potential predators (nematodes). We sampled with short time intervals (2 to 6 days) and generated a data set, suitable for mathematical modeling. Following the addition of fresh organic material, bacterial numbers increased more than 1,400-fold. There was a temporary increase in the number of active ciliates, followed by a rapid decline, although the size of the bacterial prey populations remained high. During this initial burst of ciliate growth, the population of cystic ciliates increased 100-fold. We suggest that internal population regulation is the major factor governing ciliate encystment and that the rate of encystment depends on ciliate density. This model provides a quantitative explanation of ciliatostasis and can explain why protozoan growth in soil is less than that in aquatic systems. Internally governed encystment may be an essential adaptation to an unpredictable environment in which individual protozoa cannot predict when the soil will dry out and will survive desiccation only if they have encysted in time.  相似文献   

13.
Different features can protect bacteria against protozoan grazing, for example large size, rapid movement, and production of secondary metabolites. Most papers dealing with these matters focus on bacteria. Here, we describe protozoan features that affect their ability to grow on secondary-metabolite-producing bacteria, and examine whether different bacterial secondary metabolites affect protozoa similarly. We investigated the growth of nine different soil protozoa on six different Pseudomonas strains, including the four secondary-metabolite-producing Pseudomonas fluorescens DR54 and CHA0, Pseudomonas chlororaphis MA342 and Pseudomonas sp. DSS73, as well as the two nonproducers P. fluorescens DSM50090(T) and P. chlororaphis ATCC43928. Secondary metabolite producers affected protozoan growth differently. In particular, bacteria with extracellular secondary metabolites seemed more inhibiting than bacteria with membrane-bound metabolites. Interestingly, protozoan response seemed to correlate with high-level protozoan taxonomy, and amoeboid taxa tolerated a broader range of Pseudomonas strains than did the non-amoeboid taxa. This stresses the importance of studying both protozoan and bacterial characteristics in order to understand bacterial defence mechanisms and potentially improve survival of bacteria introduced into the environment, for example for biocontrol purposes.  相似文献   

14.
Soil protozoa are characterized by their ability to produce cysts, which allows them to survive unfavorable conditions (e.g., desiccation) for extended periods. Under favorable conditions, they may rapidly excyst and begin feeding, but even under optimal conditions, a large proportion of the population may be encysted. The factors governing the dynamics of active and encysted cells in the soil are not well understood. Our objective was to determine the dynamics of active and encysted populations of ciliates during the decomposition of freshly added organic material. We monitored, in soil microcosms, the active and total populations of ciliates, their potential prey (bacteria and small protozoa), their potential competitors (amoebae, flagellates, and nematodes), and their potential predators (nematodes). We sampled with short time intervals (2 to 6 days) and generated a data set, suitable for mathematical modeling. Following the addition of fresh organic material, bacterial numbers increased more than 1,400-fold. There was a temporary increase in the number of active ciliates, followed by a rapid decline, although the size of the bacterial prey populations remained high. During this initial burst of ciliate growth, the population of cystic ciliates increased 100-fold. We suggest that internal population regulation is the major factor governing ciliate encystment and that the rate of encystment depends on ciliate density. This model provides a quantitative explanation of ciliatostasis and can explain why protozoan growth in soil is less than that in aquatic systems. Internally governed encystment may be an essential adaptation to an unpredictable environment in which individual protozoa cannot predict when the soil will dry out and will survive desiccation only if they have encysted in time.  相似文献   

15.
Based on in vitro studies, bacteria in the genus Legionella are believed to multiply within protozoa such as amoebae in aquatic environments. Current methods used for detection of Legionella species, however, are not designed to show this relationship. Thus the natural intimate association of Legionella with other microorganisms remains to be clearly documented and the extent to which protozoa might be infected with Legionella species remains undefined. In this report we describe methods based on the use of Legionella specific reagents that would prove useful in describing its associations with other microorganisms. An immunogold and in situ hybridization technique have the potential to demonstrate the natural occurrence of Legionella species in free-living amoebae. In preliminary observations, however, bacteria reactive with Legionella specific reagents were often not intimately associated with amoebae. Bacteria occurred as free single cells, as cell aggregates, in proximity to other cells and debris, and only occasionally in close proximity to amoebae. Although some Legionella species replicate within amoebae, these preliminary observations suggest the bacteria may be encountered most frequently as extracellular microorganisms, either free-floating or in association with other structures or microorganisms. The future use of these techniques will aid in the elucidation of any naturally occurring relationships between Legionella species and other microorganisms.  相似文献   

16.
C H King  E B Shotts  Jr  R E Wooley    K G Porter 《Applied microbiology》1988,54(12):3023-3033
The susceptibility of coliform bacteria and bacterial pathogens to free chlorine residuals was determined before and after incubation with amoebae and ciliate protozoa. Viability of bacteria was quantified to determine their resistance to free chlorine residuals when ingested by laboratory strains of Acanthamoeba castellanii and Tetrahymena pyriformis. Cocultures of bacteria and protozoa were incubated to facilitate ingestion of the bacteria and then were chlorinated, neutralized, and sonicated to release intracellular bacteria. Qualitative susceptibility of protozoan strains to free chlorine was also assessed. Protozoa were shown to survive and grow after exposure to levels of free chlorine residuals that killed free-living bacteria. Ingested coliforms Escherichia coli, Citrobacter freundii, Enterobacter agglomerans, Enterobacter cloacae, Klebsiella pneumoniae, and Klebsiella oxytoca and bacterial pathogens Salmonella typhimurium, Yersinia enterocolitica, Shigella sonnei, Legionella gormanii, and Campylobacter jejuni had increased resistance to free chlorine residuals. Bacteria could be cultured from within treated protozoans well after the time required for 99% inactivation of free-living cells. All bacterial pathogens were greater than 50-fold more resistant to free chlorine when ingested by T. pyriformis. Escherichia coli ingested by a Cyclidium sp., a ciliate isolated from a drinking water reservoir, were also shown to be more resistant to free chlorine. The mechanism that increased resistance appeared to be survival within protozoan cells. This study indicates that bacteria can survive ingestion by protozoa. This bacterium-protozoan association provides bacteria with increased resistance to free chlorine residuals which can lead to persistence of bacteria in chlorine-treated water. We propose that resistance to digestion by predatory protozoa was an evolutionary precursor of pathogenicity in bacteria and that today it is a mechanism for survival of fastidious bacteria in dilute and inhospitable aquatic environments.  相似文献   

17.
It is shown that the dependence of cell density on the swimming parameters of microorganisms—the average speed, the average turning frequency and the motility—obtained by Oosawa and Nakaoka using a theory with internal state variables to describe the behavior of individual cells, may be derived using only macroscopic quantities. These results are compared with the predictions of a model in which a partial differential equation is used to describe the behavior of microbial populations.  相似文献   

18.
ABSTRACT. Three types of mathematical growth models are presented to describe the individual growth of the ciliate Tetrahymena sp. feeding on the bacterium Pseudomonas fluorescens . Both organisms were isolated from a domestic waste-water treatment plant. Growth of individual ciliates and the consequences for the whole population are considered. Experimental data, obtained by following the individual ciliate during its lifespan from cell division to cell division, are used for parameter estimations. Differences between growth models for individuals turn out to have little effect on the specific population growth rate and the mean cell volume. In case of exponential growth of individuals the unstructured and structured population models are equivalent, even in time-variant environments. This knowledge can be applied in the stability analysis of food chains or forced systems. The results obtained facilitates quantification of protozoa biomass as a function of bacterial biomass in chemostats. More specifically, it highlights the dynamic behaviour of bacteria and protozoa in waste-water treatment plants.  相似文献   

19.
The rate of uptake of mixed rumen bacteria and free amino acids by washed suspensions of seven species of rumen ciliate protozoa has been followed. By assuming that the behaviour of these protozoa was the same under these conditions as during growth it was shown that Ophryoscolex caudatus could obtain the amino acids for growth by the engulfment of rumen bacteria. However, all the cellulolytic protozoa studied (Diploplastron affine, Diplodinium anacanthum, Diplodinium anisacanthum, Enoploplastron triloricatum, Eremoplastron bovis and Ostracodinium obtusum bilobum) were unable to obtain sufficient amino acids from either source to grow at even 25% of the maximum rate and it is postulated that they might utilize plant protein. O. caudatus grown in vitro did not engulf Klebsiella aerogenes or Escherichia coli but took up other bacteria and a rumen yeast at rates of up to 54000 organisms/protozoon/h from a population density of 109/ml. When grown in vivo it was more selective and engulfed mixed rumen bacteria at only 10% of the rate obtained with protozoa grown in vitro. D. affine grown in vitro did not engulf Bacteroides ruminicola, Esch. coli, Kl. aerogenes or Proteus mirabilis but took up mixed rumen bacteria from a population of 109/ml at a rate of 2200 bacteria/ protozoon/h.  相似文献   

20.
Bacterial decomposition of organic matter is frequently enhanced when protozoa are present. Various mechanisms have been proposed to account for this phenomenon, including effects associated with grazing by protozoa (such as increased recycling of limiting nutrients, removal of senescent cells, or reduction of competition among bacteria) and indirect effects of grazers (such as excretion of bacterial growth factors). Few studies have examined the role of protozoa in bacterial degradation of xenobiotic compounds in sediment containing a natural community of microbes. The effect of protozoa on mineralization of naphthalene was investigated in this study. Laboratory experiments were conducted using field-contaminated estuarine sediment, with the indigenous microbial populations. Mineralization of naphthalene was up to four times greater in treatments with actively grazing protozoa than in treatments containing the grazing inhibitor cytochalasin B. Control experiments confirmed that the grazing inhibitor was not toxic to ciliates but did prevent them from grazing. The grazing inhibitor did not affect growth rates of a mixed culture of sediment bacteria or a pure polycyclic-aromatic-hydrocarbon-degrading strain. Once grazing had been inhibited, supplementing treatments with inorganic N and P, glucose, or additional protozoa failed to stimulate naphthalene mineralization. Naphthalene-degrading bacteria were four to nine times less abundant when protozoan grazing was suppressed. We suggest that protozoa enhance naphthalene mineralization by selectively grazing on those sediment bacteria that ordinarily would outcompete naphthalene-degrading bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号