首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
W Zhao  J Zhang  Y Lu  R Wang 《The EMBO journal》2001,20(21):6008-6016
Hydrogen sulfide (H(2)S) has been traditionally viewed as a toxic gas. It is also, however, endogenously generated from cysteine metabolism. We attempted to assess the physiological role of H(2)S in the regulation of vascular contractility, the modulation of H(2)S production in vascular tissues, and the underlying mechanisms. Intravenous bolus injection of H(2)S transiently decreased blood pressure of rats by 12- 30 mmHg, which was antagonized by prior blockade of K(ATP) channels. H(2)S relaxed rat aortic tissues in vitro in a K(ATP) channel-dependent manner. In isolated vascular smooth muscle cells (SMCs), H(2)S directly increased K(ATP) channel currents and hyperpolarized membrane. The expression of H(2)S-generating enzyme was identified in vascular SMCs, but not in endothelium. The endogenous production of H(2)S from different vascular tissues was also directly measured with the abundant level in the order of tail artery, aorta and mesenteric artery. Most importantly, H(2)S production from vascular tissues was enhanced by nitric oxide. Our results demonstrate that H(2)S is an important endogenous vasoactive factor and the first identified gaseous opener of K(ATP) channels in vascular SMCs.  相似文献   

3.
Kir6.1/SUR2B channel is the major isoform of K(ATP) channels in the vascular smooth muscle. Genetic disruption of either subunit leads to dysregulation of vascular tone and regional blood flows. To test the hypothesis that the Kir6.1/SUR2B channel is a target molecule of arginine vasopressin (AVP), we performed studies on the cloned Kir6.1/SUR2B channel and cell-endogenous K(ATP) channel in rat mesenteric arteries. The Kir6.1/SUR2B channel was expressed together with V1a receptor in the HEK-293 cell line. Whole cell currents of the transfected HEK cells were activated by K(ATP) channel opener pinacidil and inhibited by K(ATP) channel inhibitor glibenclamide. AVP produced a concentration-dependent inhibition of the pinacidil-activated currents with IC(50) 2.0 nM. The current inhibition was mediated by a suppression of the open-state probability without effect on single-channel conductance. An exposure to 100 nM PMA, a potent PKC activator, inhibited the pinacidil-activated currents, and abolished the channel inhibition by AVP. Such an effect was not seen with inactive phorbol ester. A pretreatment of the cells with selective PKC blocker significantly diminished the inhibitory effect of AVP. In acutely dissociated vascular smooth myocytes, AVP strongly inhibited the cell-endogenous K(ATP) channel. In isolated mesenteric artery rings, AVP produced concentration-dependent vasoconstrictions with EC(50) 6.5 nM. At the maximum effect, pinacidil completely relaxed vasoconstriction in the continuing exposure to AVP. The magnitude of the AVP-induced vasoconstriction was significantly reduced by calphostin-C. These results therefore indicate that the Kir6.1/SUR2B channel is a target molecule of AVP, and the channel inhibition involves G(q)-coupled V1a receptor and PKC.  相似文献   

4.
5.
Wu SN  Wu AZ  Sung RJ 《Life sciences》2007,80(4):378-387
The ATP-sensitive K(+) (K(ATP)) channels are known to provide a functional linkage between the electrical activity of the cell membrane and metabolism. Two types of inwardly rectifying K(+) channel subunits (i.e., Kir6.1 and Kir6.2) with which sulfonylurea receptors are associated were reported to constitute the K(ATP) channels. In this study, we provide evidence to show two types of K(ATP) channels with different biophysical properties functionally expressed in isolated rat ventricular myocytes. Using patch-clamp technique, we found that single-channel conductance for the different two types of K(ATP) channels in these cells was 57 and 21 pS. The kinetic properties, including mean open time and bursting kinetics, did not differ between these two types of K(ATP) channels. Diazoxide only activated the small-conductance K(ATP) channel, while pinacidil and dinitrophenol stimulated both channels. Both of these K(ATP) channels were sensitive to block by glibenclamide. Additionally, western blotting, immunochemistry, and RT-PCR revealed two types of Kir6.X channels, i.e., Kir6.1 and Kir6.2, in rat ventricular myocytes. Single-cell Ca(2+) imaging also revealed that similar to dinitrophenol, diazoxide reduced the concentration of intracellular Ca(2+). The present results suggest that these two types of K(ATP) channels may functionally be related to the activity of heart cells.  相似文献   

6.
Lu Y  Hanna ST  Tang G  Wang R 《Life sciences》2002,71(12):1465-1473
A large array of voltage-gated K(+) channel (Kv) genes has been identified in vascular smooth muscle tissues. This molecular diversity underlies the vast repertoire of native Kv channels that regulate the excitability of vascular smooth muscle tissues. The contributions of different Kv subunit gene products to the native Kv currents are poorly understood in vascular smooth muscle cells (SMCs). In the present study, Kv subunit-specific antibodies were applied intracellularly to selectively block various Kv channel subunits and the whole-cell outward Kv currents were recorded using the patch-clamp technique in rat mesenteric artery SMCs. Anti-Kv1.2 antibody (8 microg/ml) inhibited the Kv currents by 29.2 +/- 5.9% (n = 6, P < 0.05), and anti-Kv1.5 antibody (6 microg/ml) by 24.5 +/- 2.6% (n = 7, P < 0.05). Anti-Kv2.1 antibody inhibited the Kv currents in a concentration-dependent fashion (4-20 microg/ml). Co-application of antibodies against Kv1.2 and Kv2.1 (8 microg/ml each) induced an additive inhibition of Kv currents by 42.3 +/- 3.1% (n = 7, P < 0.05). In contrast, anti-Kv1.3 antibody (6 microg/ml) did not have any effect on the native Kv current (n = 6, P > 0.05). A control antibody (anti-GIRK1) also had no effect on the native Kv currents. This study demonstrates that Kv1.2, Kv1.5, and Kv2.1 subunit genes all contribute to the formation of the native Kv channels in rat mesenteric artery SMCs.  相似文献   

7.
8.
ATP-sensitive K+ (K(ATP)) channels in kidney are considered to play roles in regulating membrane potential during the change in intracellular ATP concentration. They are composed of channel subunits (Kir6.1, Kir6.2), which are members of the inwardly rectifying K+ channel family, and sulphonylurea receptors (SUR1, SUR2A and SUR2B), which belong to the ATP-binding cassette superfamily. In the present study, we have investigated the expression and localization of Kir6.1 in rat kidney with Western blot analysis, immunohistochemistry, in situ hybridization histochemistry, and immunoelectron microscopy. Western blot analysis showed that Kir6.1 was expressed in the mitochondria and microsome fractions of rat kidney and very weakly in the membrane fractions. Immunohistochemistry revealed that Kir6.1 was widely distributed in renal tubular epithelial cells, glomerular mesangial cells, and smooth muscles of blood vessels. In immunoelectron microscopy, Kir6.1 is mainly localized in the mitochondria, endoplasmic reticulum (ER), and very weakly in cell membranes. Thus, Kir6.1 is contained in the kidney and may be a candidate of mitochondrial K(ATP) channels.  相似文献   

9.
ATP-sensitive K(+) (K(ATP)) channels are activated by several vasodilating hormones and neurotransmitters through the PKA pathway. Here, we show that phosphorylation at Ser1387 of the SUR2B subunit is critical for the channel activation. Experiments were performed in human embryonic kidney (HEK) 293 cells expressing the cloned Kir6.1/SUR2B channel. In whole cell patch, the Kir6.1/SUR2B channel activity was stimulated by isoproterenol via activation of beta(2) receptors. This effect was blocked in the presence of inhibitors for adenylyl cyclase or PKA. Similar channel activation was seen by exposing inside-out patches to the catalytic subunit of PKA. Because none of the previously suggested PKA phosphorylation sites accounted for the channel activation, we performed systematic mutational analysis on Kir6.1 and SUR2B. Two serine residues (Ser1351, Ser1387) located in the NBD2 of SUR2B were critical for the channel activation. In vitro phosphorylation experiments showed that Ser1387 but not Ser1351 was phosphorylated by PKA. The PKA-dependent activation of cell-endogenous K(ATP) channels was observed in acutely dissociated mesenteric smooth myocytes and isolated mesenteric artery rings, where activation of these channels contributed significantly to the isoproterenol-induced vasodilation. Taken together, these results indicate that the Kir6.1/SUR2B channel is a target of beta(2) receptors and that the channel activation relies on PKA phosphorylation of SUR2B at Ser1387.  相似文献   

10.
ATP-sensitive K(+) (K(ATP)) channel subunits on the subcellular structures of rat cardiomyocytes were studied with antibodies against Kir6.1 and Kir6.2. According to the results of Western blot analysis, Kir6.1 was strongly expressed in mitochondrial and microsome fractions, and faintly expressed in cell membrane fraction, whereas Kir6.2 was mainly expressed in the microsome fraction and weakly in cell membrane and mitochondrial fractions. Immunohistochemistry showed that Kir6.1 and Kir6.2 were expressed in the endocardium, atrial and ventricular myocardium, and in vascular smooth muscles. Immunoelectron microscopy revealed that Kir6.1 immunoreactivity was mainly localized in the mitochondria, whereas Kir6.2 immunoreactivity was mainly localized in the endoplasmic reticulum and a few in the mitochondria. Both Kir6.1 and Kir6.2 are candidates of mitochondrial K(ATP) channel subunits. The data obtained in this study will be useful for analyzing the composition of K(ATP) channels of cardiomyocytes and help to understanding the cardioprotective role of K(ATP) channels during heart ischemia.  相似文献   

11.
In an attempt to explore unknown K+ channels in mammalian cells, especially ATP-sensitive K+ (KATP) channels, we compared the sequence homology of Kir6.1 and Kir6.2, two pore-forming subunits of mammalian KATP channel genes, with bacterial genes that code for selective proteins with confirmed or putative ion transport properties. BLAST analysis revealed that a prokaryotic gene (ydfJ) expressed in Escherichia coli K12 strain shared 8.6% homology with Kir6.1 and 8.3% with Kir6.2 genes. Subsequently, we cloned and sequenced ydfJ gene from E. coli K12 and heterologously expressed it in mammalian HEK-293 cells. The whole-cell patch-clamp technique was used to record ion channel currents generated by ydfJ-encoded protein. Heterologous expression of ydfJ gene in HEK-293 cells yielded a novel K+ channel current that was inwardly rectified and had a reversal potential close to K+ equilibrium potential. The expressed ydfJ channel was blocked reversibly by low concentration of barium in a dose-dependent fashion. Specific KATP channel openers or blockers did not alter the K+ current generated by ydfJ expression alone or ydfJ coexpressed with rvSUR1 or rvSUR2B subunits of KATP channel complex. Furthermore, this coexpressed ydfJ/rvSUR1 channels were not inhibited by ATP dialysis. On the other hand, ydfJ K+ currents were inhibited by protopine (a nonspecific K+ channel blocker) but not by dofetilide (a HERG channel blocker). In summary, heterologously expressed prokaryotic ydfJ gene formed a novel functional K+ channel in mammalian cells.  相似文献   

12.
K(ATP) channels consist of pore-forming potassium inward rectifier (Kir6.x) subunits and sulfonylurea receptors (SURs). Although Kir6.1 or Kir6.2 coassemble with different SUR isoforms to form heteromultimeric functional K(ATP) channels, it is not known whether Kir6.1 and Kir6.2 coassemble with each other. To define the molecular identity of K(ATP) channels, we used adenoviral gene transfer to express wild-type and dominant-negative constructs of Kir6.1 and Kir6.2 in a heterologous expression system (A549 cells) and in native cells (rabbit ventricular myocytes). Dominant-negative (DN) Kir6.2 gene transfer suppressed current through heterologously expressed SUR2A + Kir6.2 channels. Conversely, DN Kir6.1 suppressed SUR2B + Kir6.1 current but had no effect on coexpressed SUR2A + Kir6. 2. We next probed the ability of Kir6.1 and Kir6.2 to affect endogenous K(ATP) channels in adult rabbit ventricular myocytes, using adenoviral vectors to achieve efficient gene transfer. Infection with the DN Kir6.2 virus for 72 h suppressed pinacidil-inducible K(ATP) current density measured by whole-cell patch clamp. However, there was no effect of infection with the DN Kir6.1 on the K(ATP) current. Based on these functional assays, we conclude that Kir6.1 and Kir6.2 do not heteromultimerize with each other and that Kir6.2 is the sole K(ATP) pore-forming subunit in the surface membrane of heart cells.  相似文献   

13.
Physiological and pathophysiological roles of ATP-sensitive K+ channels   总被引:32,自引:0,他引:32  
ATP-sensitive potassium (K(ATP)) channels are present in many tissues, including pancreatic islet cells, heart, skeletal muscle, vascular smooth muscle, and brain, in which they couple the cell metabolic state to its membrane potential, playing a crucial role in various cellular functions. The K(ATP) channel is a hetero-octamer comprising two subunits: the pore-forming subunit Kir6.x (Kir6.1 or Kir6.2) and the regulatory subunit sulfonylurea receptor SUR (SUR1 or SUR2). Kir6.x belongs to the inward rectifier K(+) channel family; SUR belongs to the ATP-binding cassette protein superfamily. Heterologous expression of differing combinations of Kir6.1 or Kir6.2 and SUR1 or SUR2 variant (SUR2A or SUR2B) reconstitute different types of K(ATP) channels with distinct electrophysiological properties and nucleotide and pharmacological sensitivities corresponding to the various K(ATP) channels in native tissues. The physiological and pathophysiological roles of K(ATP) channels have been studied primarily using K(ATP) channel blockers and K(+) channel openers, but there is no direct evidence on the role of the K(ATP) channels in many important cellular responses. In addition to the analyses of naturally occurring mutations of the genes in humans, determination of the phenotypes of mice generated by genetic manipulation has been successful in clarifying the function of various gene products. Recently, various genetically engineered mice, including mice lacking K(ATP) channels (knockout mice) and mice expressing various mutant K(ATP) channels (transgenic mice), have been generated. In this review, we focus on the physiological and pathophysiological roles of K(ATP) channels learned from genetic manipulation of mice and naturally occurring mutations in humans.  相似文献   

14.
15.
Cardiomyocytes express mRNA for all major subunits of ATP-sensitive potassium (K(ATP)) channels: KIR6.1, KIR6.2, SUR1A, SUR2A, and SUR2B. It has remained controversial as to whether KIR6.1 may associate with KIR6.2 to form the tetrameric pore of K(ATP) channels in cardiomyocytes. To explore this possibility, cultured rat cardiomyocytes were examined for an inhibition of K(ATP) current by overexpression of pore loop-mutated (inactive) KIR6.x. Bicistronic plasmids were constructed encoding loop-mutated (AFA or SFG for GFG) rat KIR6.x followed by EGFP. In ventricular myocytes, the overexpression of KIR6.1SFG-pIRES(2)-EGFP or KIR6.2AFA-pIRES(2)-EGFP DNA caused, after 72 h, a major decrease of K(ATP) current density of 85.8% and 82.7%, respectively (P < 0.01), relative to EGFP controls (59 +/- 9 pA/pF). In atrial myocytes, overexpression of these pore-mutated KIR6.x by 6.0-fold and 10.6-fold, as assessed by quantitative immunohistochemistry, caused a decrease of K(ATP) current density of 73.7% and 58.5%, respectively (P < 0.01). Expression of wild-type rat KIR6.2 increased the ventricular and atrial K(ATP) current density by 58.3% and 42.9%, respectively (P < 0.01), relative to corresponding EGFP controls, indicating a reserve of SUR to accommodate increased KIR6.x trafficking to the sarcolemma. The results favor the view that KIR6.1 may associate with KIR6.2 to form heterotetrameric pores of native K(ATP) channels in cardiomyocytes.  相似文献   

16.
17.
ATP-sensitive K(+) (K(ATP)) channels, composed of inward rectifier K(+) (Kir)6.x and sulfonylurea receptor (SUR)x subunits, are expressed on cellular plasma membranes. We demonstrate an essential role for SUR2 subunits in trafficking K(ATP) channels to an intracellular vesicular compartment. Transfection of Kir6.x/SUR2 subunits into a variety of cell lines (including h9c2 cardiac cells and human coronary artery smooth muscle cells) resulted in trafficking to endosomal/lysosomal compartments, as assessed by immunofluorescence microscopy. By contrast, SUR1/Kir6.x channels efficiently localized to the plasmalemma. The channel turnover rate was similar with SUR1 or SUR2, suggesting that the expression of Kir6/SUR2 proteins in lysosomes is not associated with increased degradation. Surface labeling of hemagglutinin-tagged channels demonstrated that SUR2-containing channels dynamically cycle between endosomal and plasmalemmal compartments. In addition, Kir6.2 and SUR2 subunits were found in both endosomal and sarcolemmal membrane fractions isolated from rat hearts. The balance of these K(ATP) channel subunits shifted to the sarcolemmal membrane fraction after the induction of ischemia. The K(ATP) channel current density was also increased in rat ventricular myocytes isolated from hearts rendered ischemic before cell isolation without corresponding changes in subunit mRNA expression. We conclude that an intracellular pool of SUR2-containing K(ATP) channels exists that is derived by endocytosis from the plasma membrane. In cardiac myocytes, this pool can potentially play a cardioprotective role by serving as a reservoir for modulating surface K(ATP) channel density under stress conditions, such as myocardial ischemia.  相似文献   

18.
Allicin is a natural effective organosulfur compound isolated from garlic, which possesses many beneficial properties, such as antibacterial, anti-inflammatory, antimicrobial, hypotensive and hypolipidemic. In the present study, we investigated the effects and the underlying mechanisms of allicin on isolated mesenteric arteries (MAs). We examined MAs relaxation induced by allicin on rat-isolated mesenteric artery (MA) rings, the KATP channels with patch, and the expression of Kir6.1 and SUR2B with western blotting and NO production with Diaminofluorescein-FM diacetate (DAF-FMDA) in rat mesenteric artery smooth muscle cells (MASMCs). The results showed that allicin elicited the dose-dependent vasorelaxation effect with phenylephrine (PE) precontracted rat MA rings. The vasorelaxation effect was endothelium and NO independent but could be diminished by inhibition of PKA and KATP channels in the vascular smooth muscle. Allicin activated KATP channels in rat MASMCs, and the activation of KATP channels was inhibited by the inhibitors of PKA and KATP channels. But allicin had no effect on the expression of KATP subtypes Kir6.1 and SUR2B. These observations suggest that allicin exerts vasorelaxation effect through activation of PKA-KATP-signaling pathway.  相似文献   

19.
目的:研究脂肪胺类的新型钾通道开放剂(KCO)埃他卡林(Ipt)和氰胍类的KCO吡那地尔(Pin)对大鼠心血管ATP-敏感性钾通道(KATP)的亚基SUR1、SUR2、Kir6.1和Kir6.2等在mRNA水平的调节作用。方法:SD大鼠给药1周后处死并取组织,提取总RNA,利用反转录-聚合酶链式反应(RT-PCR)研究以上基因在mRNA水平的改变。结果:与正常对照相比,心脏组织中,Ipt和Pin对KATP的4个亚基在mRNA水平均无显著影响;主动脉平滑肌上,Ipt对4个亚基的mRNA表达无显著影响,但Pin可显著上调SUR2的mRNA表达;尾动脉平滑肌上,Ipt对Kit6.1/Kit6.2、Pin对SUR2/Kir6.1均有显著下调的作用。结论:心肌、大动脉平滑肌和小动脉平滑肌KATP基因表达的调控不同,Ipt选择性调节小动脉平滑肌Kit6.1/Kit6.2;Ipt对心血管KATP基因表达的调节作用不同于Pin。  相似文献   

20.
To understand the possible functions and subcellular localizations of sulfonylurea receptors (SURs) in cardiac muscle, polyclonal anti-SUR2A and anti-SUR2B antisera were raised. Immunoblots revealed both SUR2A and SUR2B expression in mitochondrial fractions of rat heart and other cellular fractions such as microsomes and cell membranes. Immunostaining detected ubiquitous expression of both SUR2A and SUR2B in rat heart in the atria, ventricles, interatrial and interventricular septa, and smooth muscles and endothelia of the coronary arteries. Electron microscopy revealed SUR2A immunoreactivity in the cell membrane, endoplasmic reticulum (ER), and mitochondria. SUR2B immunoreactivity was mainly localized in the mitochondria as well as in the ER and cell membrane. Thus, SUR2A and SUR2B are not only the regulatory subunits of sarcolemmal K(ATP) channels but may also function as regulatory subunits in mitochondrial K(ATP) channels and play important roles in cardioprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号