首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multiplex PCR assay based on the 16S rRNA genes was developed for the simultaneous detection of three major fish pathogens, Aeromonas salmonicida, Flavobacterium psychrophilum, and Yersinia ruckeri. The assay proved to be specific and as sensitive as each single PCR assay, with detection limits in the range of 6, 0.6, and 27 CFU for A. salmonicida, F. psychrophilum, and Y. ruckeri, respectively. The assay was useful for the detection of the bacteria in artificially infected fish as well as in fish farm outbreaks. Results revealed that this multiplex PCR system permits a specific, sensitive, reproducible, and rapid method for the routine laboratory diagnosis of infections produced by these three bacteria.  相似文献   

2.
A multiplex PCR-based method was designed for the simultaneous detection of the main pathogens involved in warm-water streptococcosis in fish (Streptococcus iniae, Streptococcus difficilis, Streptococcus parauberis, and Lactococcus garvieae). Each of the four pairs of oligonucleotide primers exclusively amplified the targeted gene of the specific microorganism. The sensitivity of the multiplex PCR using purified DNA was 25 pg for S. iniae, 12.5 pg for S. difficilis, 50 pg for S. parauberis, and 30 pg for L. garvieae. The multiplex PCR assay was useful for the specific detection of the four species of bacteria not only in pure culture but also in inoculated fish tissue homogenates and naturally infected fish. Therefore, this method could be a useful alternative to the culture-based method for the routine diagnosis of warm-water streptococcal infections in fish.  相似文献   

3.
A PCR-based method was developed for the specific detection of Yersinia ruckeri in tissues of inoculated trout and naturally infected trout. No amplification products were obtained with other yersiniae, bacterial fish pathogens, or phylogenetically related bacteria (n = 34). The sensitivity of PCR detection was 60 to 65 bacterial cells per PCR tube, which was decreased to 10 to 20 cells by hybridization with a nonradioactive probe. The PCR assay proved to be as reliable as and faster than the conventional culture method for the detection of Y. ruckeri in infected trout tissues.  相似文献   

4.
The use of molecular tools for early and rapid detection of gram-negative histamine-producing bacteria is important for preventing the accumulation of histamine in fish products. To date, no molecular detection or identification system for gram-negative histamine-producing bacteria has been developed. A molecular method that allows the rapid detection of gram-negative histamine producers by PCR and simultaneous differentiation by single-strand conformation polymorphism (SSCP) analysis using the amplification product of the histidine decarboxylase genes (hdc) was developed. A collection of 37 strains of histamine-producing bacteria (8 reference strains from culture collections and 29 isolates from fish) and 470 strains of non-histamine-producing bacteria isolated from fish were tested. Histamine production of bacteria was determined by paper chromatography and confirmed by high-performance liquid chromatography. Among 37 strains of histamine-producing bacteria, all histidine-decarboxylating gram-negative bacteria produced a PCR product, except for a strain of Citrobacter braakii. In contrast, none of the non-histamine-producing strains (470 strains) produced an amplification product. Specificity of the amplification was further confirmed by sequencing the 0.7-kbp amplification product. A phylogenetic tree of the isolates constructed using newly determined sequences of partial hdc was similar to the phylogenetic tree generated from 16S ribosomal DNA sequences. Histamine accumulation occurred when PCR amplification of hdc was positive in all of fish samples tested and the presence of powerful histamine producers was confirmed by subsequent SSCP identification. The potential application of the PCR-SSCP method as a rapid monitoring tool is discussed.  相似文献   

5.
In the present work we develop a multiplex PCR assay for the detection and identification of the fish pathogen Vibrio vulnificus biotype 2 with discriminating potential for zoonotic strains (serovar E). The PCR assay allowed the identification of two new biotype 2 serovar E human isolates from culture collections. Finally, the multiplex was successfully applied to both diagnosis and carrier detection in field samples.  相似文献   

6.
Clonorchiasis caused by the oriental liver fluke Clonorchis sinensis is a fish-borne zoonosis endemic in a number of countries. This article describes the development of a TaqMan based real-time PCR assay for detection of C. sinensis DNA in human feces and in fishes. Primers targeting the first internal transcribed spacer (ITS-1) sequence of the fluke were highly specific for C. sinensis, as evidenced by the negative amplification of closely related trematodes in the test with the exception of Opisthorchis viverrini. The detection limit of the assay was 1 pg of purified genomic DNA, 5 EPG (eggs per gram feces) or one metacercaria per gram fish filet. The assay was evaluated by testing 22 human fecal samples and 37 fish tissues microscopically determined beforehand, and the PCR results were highly in agreement with the microscopic results. This real-time PCR assay provides a useful tool for the sensitive detection of C. sinensis DNA in human stool and aquatic samples in China and other endemic countries where O. viverrini and Opisthorchis felineus are absent.  相似文献   

7.
Viral hemorrhagic septicemia virus (VHSV) infects a wide range of marine fish species. To study the occurrence of VHSV in wild marine fish populations in Norwegian coastal waters and fjord systems a total of 1927 fish from 39 different species were sampled through 5 research cruises conducted in 2009 to 2011. In total, VHSV was detected by rRT-PCR in twelve samples originating from Atlantic herring (Clupea harengus), haddock (Melanogrammus aeglefinus), whiting (Merlangius merlangus) and silvery pout (Gadiculus argenteus). All fish tested positive in gills while four herring and one silvery pout also tested positive in internal organs. Successful virus isolation in cell culture was only obtained from one pooled Atlantic herring sample which shows that today''s PCR methodology have a much higher sensitivity than cell culture for detection of VHSV. Sequencing revealed that the positive samples belonged to VHSV genotype Ib and phylogenetic analysis shows that the isolate from Atlantic herring and silvery pout are closely related. All positive fish were sampled in the same area in the northern county of Finnmark. This is the first detection of VHSV in Atlantic herring this far north, and to our knowledge the first detection of VHSV in silvery pout. However, low prevalence of VHSV genotype Ib in Atlantic herring and other wild marine fish are well known in other parts of Europe. Earlier there have been a few reports of disease outbreaks in farmed rainbow trout with VHSV of genotype Ib, and our results show that there is a possibility of transfer of VHSV from wild to farmed fish along the Norwegian coast line. The impact of VHSV on wild fish is not well documented.  相似文献   

8.
The attributes of the PCR allowed implementation of an assay for specific detection of Piscirickettsia salmonis from a few microliters of fish serum. This opens the way to less invasive modes of sampling for this microbial pathogen in salmonids.  相似文献   

9.
Clonorchiasis caused by Clonorchis sinensis is a fish-borne parasitic disease which is endemic in a number of countries. Using the sequences of the internal transcribed spacers (ITS-1 and ITS-2) of nuclear ribosomal DNA (rDNA) of C. sinensis as genetic markers, a pair of C. sinensis-specific primers was designed and used to establish a specific PCR assay for the diagnosis of C. sinensis infection in humans, cats and fish. This approach allowed the specific identification of C. sinensis after optimizing amplification conditions, with no amplicons being amplified from related heterogeneous DNA samples, and sequencing of amplicons confirmed the identity of the sequences amplified. The detection limit of this assay was 1.03 pg of adult C. sinensis, 1.1 metacercariae per gram of fish filet, and a single egg in human and cat feces. The PCR assay should provide a useful tool for the diagnosis and molecular epidemiological investigation of clonorchiasis in humans and animals.  相似文献   

10.
Although environmental DNA (eDNA) has been used to infer the presence of rare aquatic species, many facets of this technique remain unresolved. In particular, the relationship between eDNA and fish distribution is not known. We examined the relationship between the distribution of fish and their eDNA (detection rate and concentration) in a lake. A quantitative PCR (qPCR) assay for a region within the cytochrome b gene of the common carp (Cyprinus carpio or ‘carp’), an ubiquitous invasive fish, was developed and used to measure eDNA in Lake Staring (MN, USA), in which both the density of carp and their distribution have been closely monitored for several years. Surface water, sub-surface water, and sediment were sampled from 22 locations in the lake, including areas frequently used by carp. In water, areas of high carp use had a higher rate of detection and concentration of eDNA, but there was no effect of fish use on sediment eDNA. The detection rate and concentration of eDNA in surface and sub-surface water were not significantly different (p≥0.5), indicating that eDNA did not accumulate in surface water. The detection rate followed the trend: high-use water > low-use water > sediment. The concentration of eDNA in sediment samples that were above the limit of detection were several orders of magnitude greater than water on a per mass basis, but a poor limit of detection led to low detection rates. The patchy distribution of eDNA in the water of our study lake suggests that the mechanisms that remove eDNA from the water column, such as decay and sedimentation, are rapid. Taken together, these results indicate that effective eDNA sampling methods should be informed by fish distribution, as eDNA concentration was shown to vary dramatically between samples taken less than 100 m apart.  相似文献   

11.
Specific PCR detection and electron microscopy of Flavobacterium columnare revealed the risk of false-negative results in molecular detection of this fish pathogen. Freezing and thawing destroyed the cells so that DNA was for the most part undetectable by PCR. The detection of bacteria was also weakened after prolonged enrichment cultivation of samples from infected fish.  相似文献   

12.
In Europe, alternative methods for the detection of food-borne pathogens can be used instead of the standard ISO/CEN reference protocol, if validated according to the protocol outlined in ISO 16140, 2003. In this study, the performance of two novel methods for the detection of Salmonella sp. using real-time PCR technology in tandem with an adapted two-step enrichment protocol were assessed and validated against a reference culture method, ISO 6579, 2004. The DNA and RNA real-time PCR assays amplified a 270 bp region of the hilA gene of Salmonella enterica serovars, and incorporated an internal amplification control (IAC) which was co-amplified with the hilA gene to monitor potential PCR inhibitors and ensure successful amplification. The inclusivity and exclusivity of the hilA primer set was examined for both the DNA and RNA methods and detected the 30 S. enterica serovars but not the 30 non-salmonellae strains. The inoculation of meat carcass swabs with five different S. enterica serovars at five different inocula, indicated both PCR methods were able to detect between 1 and 10 CFU per carcass swab. The real-time DNA PCR assay performed as well as the traditional cultural method in detecting Salmonella sp. in artificially contaminated salad, chocolate, fish and cheese samples. The relative accuracy, relative sensitivity and relative specificity of the DNA PCR real-time method were determined to be 98.5, 98.1 and 100%, respectively. The DNA method was further validated in a collaborative inter-laboratory trial according to ISO 16140, 2003. The validated methods provide an accurate means for the rapid detection and tracking of S. enterica serovars giving equivalent results to the standard method within three days, thus providing an alternative testing method to the reference microbiological method. The real-time PCR methodology not only offers significant time-saving advantages compared to traditional methods, it can also be applied to a wide range of samples types.  相似文献   

13.
For many years, Erysipelothrix rhusiopathiae has been known to be the causative agent of the occupationally related infection erysipeloid. A survey of the distribution of Erysipelothrix spp. in 19 Australasian seafoods was conducted, and methodologies for the detection of Erysipelothrix spp. were evaluated. Twenty-one Erysipelothrix spp. were isolated from 52 seafood parts. Primary isolation of Erysipelothrix spp. was most efficiently achieved with brain heart infusion broth enrichment followed by subculture onto a selective brain heart infusion agar containing kanamycin, neomycin, and vancomycin after 48 h of incubation. Selective tryptic soy broth, with 48 h of incubation, was the best culture method for the detection of Erysipelothrix spp. with PCR. PCR detection was 50% more sensitive than culture. E. rhusiopathiae was isolated from a variety of different fish, cephalopods, and crustaceans, including a Western rock lobster (Panulirus cygnus). There was no significant correlation between the origin of the seafoods tested and the distribution of E. rhusiopathiae. An organism indistinguishable from Erysipelothrix tonsillarum was isolated for the first time from an Australian oyster and a silver bream. Overall, Erysipelothrix spp. were widely distributed in Australasian seafoods, illustrating the potential for erysipeloid-like infections in fishermen.  相似文献   

14.
Salmonid fish is one of the allergenic items that are recommended to be labeled in the Japanese allergen-labeling system. This study develops a salmonid-specific polymerase chain reaction (PCR) method. A new primer pair, SKE-F/SKE-R, was designed to specifically detect the salmonid fish gene encoding mitochondrial DNA cytochrome b. Genomic DNAs extracted from 58 kinds of seafood and 11 kinds of processed food were individually subjected to PCR by using the primer pair, and a salmonid-specific fragment of 212 bp was only amplified in the salmonid samples and salmonid-containing processed foods. The detection limit of the PCR method was as low as 0.02 fg/µL of salmonid fish DNA (corresponding to 10 copies). There is no ELISA method for salmonid fish, making our PCR method the only reliable measure for detecting salmonid fish in processed foods.  相似文献   

15.
Ponto-Caspian gobies are a flock of five invasive fish species that have colonized freshwaters and brackish waters in Europe and North America. One of them, the round goby Neogobius melanostomus, figures among the 100 worst invaders in Europe. Current methods to detect the presence of Ponto-Caspian gobies involve catching or sighting the fish. These approaches are labor intense and not very sensitive. Consequently, populations are usually detected only when they have reached high densities and when management or containment efforts are futile. To improve monitoring, we developed an assay based on the detection of DNA traces (environmental DNA, or eDNA) of Ponto-Caspian gobies in river water. The assay specifically detects invasive goby DNA and does not react to any native fish species. We apply the assay to environmental samples and demonstrate that parameters such as sampling depth, sampling location, extraction protocol, PCR protocol and PCR inhibition greatly impact detection. We further successfully outline the invasion front of Ponto-Caspian gobies in a large river, the High Rhine in Switzerland, and thus demonstrate the applicability of the assay to lotic environments. The eDNA assay requires less time, equipment, manpower, skills, and financial resources than the conventional monitoring methods such as electrofishing, angling or diving. Samples can be taken by untrained individuals, and the assay can be performed by any molecular biologist on a conventional PCR machine. Therefore, this assay enables environment managers to map invaded areas independently of fishermen’s’ reports and fish community monitorings.  相似文献   

16.
During an ongoing epizootic of mycobacteriosis, wild striped bass Morone saxatilis from Chesapeake Bay were analyzed using 3 methods for detection of either mycobacterial infection or associated granulomatous pathology. The specific detection techniques, which utilized aseptically collected splenic tissue, were histology, quantitative culture and nested PCR. Based on analysis of 118 samples, detection of infection differed significantly between the 3 methods (chi-square, p = 0.0007). Quantitative culture and nested PCR detected similar, higher rates of infection (69 and 75%, respectively) than the histological method (52%). Although primary PCR assays for a 924 to 940 bp segment of the mycobacterial 16S rRNA gene were positive for genomic DNA from mycobacterial cultures, a secondary, nested PCR reaction for an internal 300 bp gene segment was required in order to detect mycobacteria within splenic tissue. A similar rate of mycobacterial infection was present in fish collected from all sites tested. Although all detection methods found that striped bass age 4.0 to 4.9 yr had the highest positive incidence, nested PCR detected a higher frequency of mycobacterial infection in fish > or = 6.0 yr of age than the other 2 methods. Quantitative bacteriology was a more sensitive detection technique when the fish tissue contained < or = 10(3) mycobacteria g(-1).  相似文献   

17.
The causative agent of fish pasteurellosis, the organism formerly known as Pasteurella piscicida, has been reclassified as Photobacterium damselae subsp. piscicida on the basis of 16S rRNA gene sequence comparisons and chromosomal DNA-DNA hybridization data; thus, this organism belongs to the same species as Photobacterium damselae subsp. damselae (formerly Vibrio damselae). Since reassignment of P. damselae subsp. piscicida was based on only two strains, one objective of the present work was to confirm the taxonomic position of this fish pathogen by sequencing the 16S rRNA genes of 26 strains having different geographic and host origins. In addition, a nested PCR protocol for detection of P. damselae based on 16S rRNA was developed. This PCR protocol was validated by testing 35 target and 24 nontarget pure cultures, and the detection limits obtained ranged from 1 pg to 10 fg of DNA (200 to 20 cells). A similar level of sensitivity was observed when the PCR protocol was applied to fish tissues spiked with bacteria. The PCR approach described in this paper allows detection of the pathogen in mixed plate cultures obtained from asymptomatic fish suspected to be carriers of P. damselae subsp. piscicida, in which growth of this bacterium cannot be visualized. Our results indicate that the selective primers which we designed represent a powerful tool for sensitive and specific detection of fish pasteurellosis.  相似文献   

18.
Streptococcus iniae was isolated from diseased wild fish collected near a mariculture facility where gilthead sea bream and European sea bass exhibited a similar infection. Species-specific PCR and ribotyping confirmed that wild and cultured fish were infected by a single S. iniae clone. Wild fish are therefore potential amplifiers of pathogenic S. iniae strains.  相似文献   

19.
Diagnostic Real-Time PCR for Detection of Salmonella in Food   总被引:5,自引:0,他引:5       下载免费PDF全文
A robust 5′ nuclease (TaqMan) real-time PCR was developed and validated in-house for the specific detection of Salmonella in food. The assay used specifically designed primers and a probe target within the ttrRSBCA locus, which is located near the Salmonella pathogenicity island 2 at centisome 30.5. It is required for tetrathionate respiration in Salmonella. The assay correctly identified all 110 Salmonella strains and 87 non-Salmonella strains tested. An internal amplification control, which is coamplified with the same primers as the Salmonella DNA, was also included in the assay. The detection probabilities were 70% when a Salmonella cell suspension containing 103 CFU/ml was used as a template in the PCR (5 CFU per reaction) and 100% when a suspension of 104 CFU/ml was used. A pre-PCR sample preparation protocol including a preenrichment step in buffered peptone water followed by DNA extraction-purification was applied when 110 various food samples (chicken rinses, minced meat, fish, and raw milk) were investigated for Salmonella. The diagnostic accuracy was shown to be 100% compared to the traditional culture method. The overall analysis time of the PCR method was approximately 24 h, in contrast to 4 to 5 days of analysis time for the traditional culture method. This methodology can contribute to meeting the increasing demand of quality assurance laboratories for standard diagnostic methods. Studies are planned to assess the interlaboratory performance of this diagnostic PCR method.  相似文献   

20.
A PCR assay for detection and identification of the fish pathogen Listonella anguillarum was developed. Primers amplifying a 519 bp internal fragment of the L. anguillarum rpoN gene, which codes for the factor sigma54, were utilized. The detection limit of the PCR using L. anguillarum pure cultures was approximately 1 to 10 bacterial cells per reaction. For tissue or blood samples of infected turbot Scophthalmus maximus, the detection limit was 10 to 100 L. anguillarum cells per reaction, which corresponds to 2 x 10(3) to 2 x 10(4) cells g(-1) fish tissue. Our results suggest that this PCR protocol is a sensitive and specific molecular method for the detection of the fish pathogen L. anguillarum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号