首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have measured the processivity of telomeric DNA extension by Euplotes aediculatus telomerase at various concentrations of the nucleotide substrates dGTP and dTTP. The maximum processivity (approximately 3 repeats) was observed at approximately 100 microM of each dNTP. Processivity decreased as the dNTP concentrations were reduced and, surprisingly, as the concentration of dGTP was increased. Also, the characteristic banding pattern generated by telomerase extension of DNA primers shifted in response to changes in dGTP concentration. One pattern with 8 nt periodicity was predominant at dGTP concentrations </=16 microM, while at >/= 250 microM an 8 nt repeat pattern out-of-phase with the first was observed; at intermediate concentrations the two patterns coexisted. We propose that two different segments of the RNA subunit can serve as the template for repeat synthesis; nt 42-49 at low dGTP concentrations and nt 36-43 at high dGTP concentrations. An alternative model for the low dGTP pattern involves an internal pause site but no pause at the end of the template and is, therefore, considered less likely. Because the effects of dGTP on processivity and banding pattern appear to be distinct from nucleotide binding in the polymerase active site, we propose a second dGTP binding site involved in template selection and processivity.  相似文献   

2.
Human telomerase synthesizes telomeric DNA repeats (GGTTAG)n onto chromosome ends using a short template from its integral telomerase RNA (hTR). However, telomerase is markedly slow for processive DNA synthesis among DNA polymerases. We report here that the unique template‐embedded pause signal restricts the first nucleotide incorporation for each repeat synthesized, imparting a significantly greater KM. This slow nucleotide incorporation step drastically limits repeat addition processivity and rate under physiological conditions, which is alleviated with augmented concentrations of dGTP or dGDP, and not with dGMP nor other nucleotides. The activity stimulation by dGDP is due to nucleoside diphosphates functioning as substrates for telomerase. Converting the first nucleotide of the repeat synthesized from dG to dA through the telomerase template mutation, hTR‐51U, correspondingly shifts telomerase repeat addition activity stimulation to dATP‐dependent. In accordance, telomerase without the pause signal synthesizes DNA repeats with extremely high efficiency under low dGTP concentrations and lacks dGTP stimulation. Thus, the first nucleotide incorporation step of the telomerase catalytic cycle is a potential target for therapeutic enhancement of telomerase activity.  相似文献   

3.
4.
Yeast telomerase is capable of limited repeat addition processivity   总被引:2,自引:1,他引:1  
  相似文献   

5.
Telomerase is a specialized cellular ribonucleoprotein complex that can synthesize long stretches of a DNA primer by using an intrinsic RNA template sequence. This requires that the telomerase must be able to carry out both nucleotide and repeat additions. Here, based on available structures and experimental data, a model is presented to describe these two addition activities. In the model, the forward movement of the polymerase active site along the template during the processive nucleotide addition is rectified through the incorporation of a matched base, via the Brownian ratchet mechanism. The unpairing of the DNA:RNA hybrid and then repositioning of product 3′-end after each round of repeat synthesis, which are prerequisites for the processive repeat addition, are caused by a force acting on the primer. The force results from the conformational transition of the stem III pseudoknot, which is mechanically induced by the rotation of TERT fingers together with stem IV loop towards the polymerase active site upon a nucleotide binding. Based on the model, the dynamics of processive nucleotide and repeat additions by recombinant Tetrahymena telomerase is studied analytically, which gives good quantitative explanations to the previous experimental results. Moreover, some predicted results are presented. In particular, it is shown that the repeat addition processivity is mainly determined by the difference between the free-energy change required to disrupt the DNA:RNA hybrid and that required to unfold the stem III pseudoknot. A large difference in free energy corresponds to a low repeat addition processivity while a small difference in free energy corresponds to a high repeat addition processivity.  相似文献   

6.
Telomerase is a unique ribonucleoprotein that reverse transcribes a defined region of its RNA subunit onto the ends of eukaryotic chromosomes. The product of telomerase, telomeric DNA, is typically a G-rich repeated sequence, (TTTTGGGG)(n) in the ciliate Euplotes aediculatus and (TTAGGG)(n) in humans. Telomerase can extend oligonucleotide primers in vitro in a processive fashion. We used dNTP analogues to study the structure-activity relationship between substrate nucleotides and processivity of telomerase from E. aediculatus. Several analogues, including 2'-deoxyuridine triphosphate (dUTP), 2'-deoxyinosine triphosphate (dITP), and 7-deaza-2'-deoxyguanosine triphosphate (7-deaza-dGTP), were good substrates for telomerase with K(m) and V(max) values near those of the natural substrates, dTTP and dGTP. However, telomerase processivity was affected with these substrates, decreasing in the order dUTP > 7-deaza-dGTP > dITP. Telomerase did not completely reverse transcribe the template when dITP was the substrate, and it efficiently extended a primer by the addition of two repeats when 7-deaza-dGTP and dUTP were utilized. When the same nucleotide analogues were incorporated into the primers, no effects were observed except in the case of a 3'-terminal deoxyinosine. The data support a model that includes the formation of an intramolecular secondary structure within the product DNA to facilitate translocation. The most likely structure is a G-G hairpin.  相似文献   

7.
8.
9.
10.
Telomerase contains two essential components: an RNA molecule that templates telomeric repeat synthesis and a catalytic protein component. Human telomerase is processive, while the mouse enzyme has much lower processivity. We have identified nucleotide determinants in the telomerase RNA that are responsible for this difference in processivity. Mutations adjacent to the template region of human and mouse telomerase RNA significantly altered telomerase processivity both in vitro and in vivo. We also identified functionally important nucleotides in the pseudoknot domain of telomerase RNA that potentially mediate the incompatibility between human TERT and mouse telomerase RNA. These experiments identify essential residues of the telomerase RNA that regulate telomerase activity and processivity.  相似文献   

11.
Maine IP  Chen SF  Windle B 《Biochemistry》1999,38(46):15325-15332
Human telomerase produces a long ladder of six-base repeat additions to a primer, while CHO telomerase primarily adds only one or two repeat additions to a primer. Under the standard assay conditions, the concentration of dGTP is very low, so we investigated the effects of increasing dGTP concentration on human and CHO telomerase activities. Increasing dGTP concentration over a range of 1.5-50 microM caused the human telomerase to produce longer primer extension products until products were so large that no ladder pattern was apparent. Increasing dGTP concentration resulted in CHO telomerase producing one to eight repeat additions, though still not as many repeats as produced by human telomerase even under low dGTP conditions. CHO telomerase produced a six-base ladder pattern comparable to human telomerase only after raising the dGTP concentration to 500 microM under conditions in which the dATP concentration was low. Primer challenge experiments showed the human telomerase exhibited approximately 100% processivity at both low and high concentrations of dGTP, and thus increasing dGTP concentration appeared to affect only the extension rate. In contrast, CHO telomerase exhibited low processivity under low concentrations of dGTP and increased processivity at higher dGTP concentrations. One explanation for the low processivity of CHO was found in CHO telomerase's inability to extend the GGTTAG permuted primer under nonprocessive conditions, while able to extend the other five permuted primers. Competition studies of different permuted primers indicated that the GGTTAG primer cannot interact with the nonprocessive CHO telomerase. A model is proposed for explaining the nonprocessive behavior of CHO telomerase.  相似文献   

12.
The ribonucleoprotein complex telomerase is critical for replenishing chromosome-end sequence during eukaryotic DNA replication. The template for the addition of telomeric repeats is provided by the RNA component of telomerase. However, in budding yeast, little is known about the structure and function of most of the remainder of the telomerase RNA. Here, we report the identification of a paired element located immediately 5' of the template region in the Saccharomyces cerevisiae telomerase RNA. Mutations disrupting or replacing the helical element showed that this structure, but not its exact nucleotide sequence, is important for telomerase function in vivo and in vitro. Biochemical characterization of a paired element mutant showed that the mutant generated longer products and incorporated noncognate nucleotides. Sequencing of in vivo synthesized telomeres from this mutant showed that DNA synthesis proceeded beyond the normal template. Thus, the S. cerevisiae element resembles a similar element found in Kluyveromyces budding yeasts with respect to a function in template boundary specification. In addition, the in vitro activity of the paired element mutant indicates that the RNA element has additional functions in enzyme processivity and in directing template usage by telomerase.  相似文献   

13.
14.
15.
16.
To maintain telomeres, telomerase evolved a unique biochemical activity: the use of a single-stranded RNA template for the synthesis of single-stranded DNA repeats. High repeat addition processivity (RAP) of the Tetrahymena telomerase holoenzyme requires association of the catalytic core with the telomere adaptor subcomplex (TASC) and an RPA1-related subunit (p82 or Teb1). Here, we used DNA binding and holoenzyme reconstitution assays to investigate the mechanism by which Teb1 and TASC confer high RAP. We show that TASC association with the recombinant telomerase catalytic core increases enzyme activity. Subsequent association of the Teb1 C-terminal domain with TASC confers the capacity for high RAP even though the Teb1 C-terminal domain does not provide a high-affinity DNA interaction site. Efficient RAP also requires suppression of nascent product folding mediated by the central Teb1 DNA-binding domains (DBDs). These sequence-specific high-affinity DBDs of Teb1 can be functionally substituted by the analogous DBDs of Tetrahymena Rpa1 to suppress nascent product folding but only if the Rpa1 high-affinity DBDs are physically tethered into holoenzyme context though the Teb1 C-terminal domain. Overall, our findings reveal multiple mechanisms and multiple surfaces of protein-DNA and protein-protein interaction that give rise to elongation processivity in the synthesis of a single-stranded nucleic acid product.  相似文献   

17.
18.
Telomerase contributes to chromosome end replication by synthesizing repeats of telomeric DNA, and the telomeric DNA‐binding proteins protection of telomeres (POT1) and TPP1 synergistically increase its repeat addition processivity. To understand the mechanism of increased processivity, we measured the effect of POT1–TPP1 on individual steps in the telomerase reaction cycle. Under conditions where telomerase was actively synthesizing DNA, POT1–TPP1 bound to the primer decreased primer dissociation rate. In addition, POT1–TPP1 increased the translocation efficiency. A template‐mutant telomerase that synthesizes DNA that cannot be bound by POT1–TPP1 exhibited increased processivity only when the primer contained at least one POT1–TPP1‐binding site, so a single POT1–TPP1–DNA interaction is necessary and sufficient for stimulating processivity. The POT1–TPP1 effect is specific, as another single‐stranded DNA‐binding protein, gp32, cannot substitute. POT1–TPP1 increased processivity even when substoichiometric relative to the DNA, providing evidence for a recruitment function. These results support a model in which POT1–TPP1 enhances telomerase processivity in a manner markedly different from the sliding clamps used by DNA polymerases.  相似文献   

19.
20.
Telomerase synthesizes telomeric DNA repeats onto chromosome termini from an intrinsic RNA template. The processive synthesis of DNA repeats relies on a unique, yet poorly understood, mechanism whereby the telomerase RNA template translocates and realigns with the DNA primer after synthesizing each repeat. Here, we provide evidence that binding of the realigned RNA/DNA hybrid by the active site is an essential step for template translocation. Employing a template-free human telomerase system, we demonstrate that the telomerase active site directly binds to RNA/DNA hybrid substrates for DNA polymerization. In telomerase processivity mutants, the template-translocation efficiency correlates with the affinity for the RNA/DNA hybrid substrate. Furthermore, the active site is unoccupied during template translocation as a 5 bp extrinsic RNA/DNA hybrid effectively reduces the processivity of the template-containing telomerase. This suggests that strand separation and template realignment occur outside the active site, preceding the binding of realigned hybrid to the active site. Our results provide new insights into the ancient RNA/DNA hybrid binding ability of telomerase and its role in template translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号