首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 881 毫秒
1.
CDC25 (A, B and C) phosphatases control cell cycle progression through the timely dephosphorylation and activation of cyclin-dependent kinases (CDK). At mitosis the CDC25B phosphatase activity is dependent on its phosphorylation by multiple kinases impinging on its localisation, stability and catalytic activity. Here we report that prior phosphorylation of CDC25B by CDK1 enhances its substrate properties for PLK1 in vitro, and we also show that phosphorylated S50 serves as a docking site for PLK1. Using a sophisticated strategy based on the sequential phosphorylation of CDC25B with 16O and 18O ATP prior to nanoLC–MS/MS analysis we identified 13 sites phosphorylated by PLK1. This study illustrates the complexity of the phosphorylation pattern and of the subsequent regulation of CDC25B activity.  相似文献   

2.
Activation of the neuronal Ras GDP/GTP exchange factor (GEF) CDC25Mm/GRF1 is known to be associated with phosphorylation of serine/threonine. To increase our knowledge of the mechanism involved, we have analyzed the ability of several serine/threonine kinases to phosphorylate CDC25Mm in vivo and in vitro. We could demonstrate the involvement of cAMP-dependent protein kinase (PKA) in the phosphorylation of CDC25Mm in fibroblasts overexpressing this RasGEF as well as in mouse brain synaptosomal membranes. In vitro, PKA was found to phosphorylate multiple sites on purified CDC25Mm, in contrast to protein kinase C, calmodulin kinase II, and casein kinase II, which were virtually inactive. Eight phosphorylated serines and one threonine were identified by mass spectrometry and Edman degradation. Most of them were clustered around the Ras exchanger motif/PEST motifs situated in the C-terminal moiety (residues 631-978) preceding the catalytic domain. Ser745 and Ser822 were the most heavily phosphorylated residues and the only ones coinciding with PKA consensus sequences. Substitutions S745D and S822D showed that the latter mutation strongly inhibited the exchange activity of CDC25Mm on Ha-Ras. The multiple PKA-dependent phosphorylation sites on CDC25Mm suggest a complex regulatory picture of this RasGEF. The results are discussed in the light of structural and/or functional similarities with other members of this RasGEF family.  相似文献   

3.
Chk1 is an evolutionarily conserved protein kinase that regulates cell cycle progression in response to checkpoint activation. In this study, we demonstrated that agents that block DNA replication or cause certain forms of DNA damage induce the phosphorylation of human Chk1. The phosphorylated form of Chk1 possessed higher intrinsic protein kinase activity and eluted more quickly on gel filtration columns. Serines 317 and 345 were identified as sites of phosphorylation in vivo, and ATR (the ATM- and Rad3-related protein kinase) phosphorylated both of these sites in vitro. Furthermore, phosphorylation of Chk1 on serines 317 and 345 in vivo was ATR dependent. Mutants of Chk1 containing alanine in place of serines 317 and 345 were poorly activated in response to replication blocks or genotoxic stress in vivo, were poorly phosphorylated by ATR in vitro, and were not found in faster-eluting fractions by gel filtration. These findings demonstrate that the activation of Chk1 in response to replication blocks and certain forms of genotoxic stress involves phosphorylation of serines 317 and 345. In addition, this study implicates ATR as a direct upstream activator of Chk1 in human cells.  相似文献   

4.
Activation of Cdc2/cyclin B kinase and entry into mitosis requires dephosphorylation of inhibitory sites on Cdc2 by Cdc25 phosphatase. In vertebrates, Cdc25C is inhibited by phosphorylation at a single site targeted by the checkpoint kinases Chk1 and Cds1/Chk2 in response to DNA damage or replication arrest. In Xenopus early embryos, the inhibitory site on Cdc25C (S287) is also phosphorylated by a distinct protein kinase that may determine the intrinsic timing of the cell cycle. We show that S287-kinase activity is repressed in extracts of unfertilized Xenopus eggs arrested in M phase but is rapidly stimulated upon release into interphase by addition of Ca2+, which mimics fertilization. S287-kinase activity is not dependent on cyclin B degradation or inactivation of Cdc2/cyclin B kinase, indicating a direct mechanism of activation by Ca2+. Indeed, inhibitor studies identify the predominant S287-kinase as Ca2+/calmodulin-dependent protein kinase II (CaMKII). CaMKII phosphorylates Cdc25C efficiently on S287 in vitro and, like Chk1, is inhibited by 7-hydroxystaurosporine (UCN-01) and debromohymenialdisine, compounds that abrogate G2 arrest in somatic cells. CaMKII delays Cdc2/cyclin B activation via phosphorylation of Cdc25C at S287 in egg extracts, indicating that this pathway regulates the timing of mitosis during the early embryonic cell cycle.  相似文献   

5.
Rad9 is required for the MEC1/TEL1-dependent activation of Saccharomyces cerevisiae DNA damage checkpoint pathways mediated by Rad53 and Chk1. DNA damage induces Rad9 phosphorylation, and Rad53 specifically associates with phosphorylated Rad9. We report here that multiple Mec1/Tel1 consensus [S/T]Q sites within Rad9 are phosphorylated in response to DNA damage. These Rad9 phosphorylation sites are selectively required for activation of the Rad53 branch of the checkpoint pathway. Consistent with the in vivo function in recruiting Rad53, Rad9 phosphopeptides are bound by Rad53 forkhead-associated (FHA) domains in vitro. These data suggest that functionally independent domains within Rad9 regulate Rad53 and Chk1, and support the model that FHA domain-mediated recognition of Rad9 phosphopeptides couples Rad53 to the DNA damage checkpoint pathway.  相似文献   

6.
A comparative biochemical analysis was performed using recombinant human protein kinase Chk2 (checkpoint kinase 2) expressed in bacteria and insect cells. Dephosphorylated, inactive, recombinant human Chk2 could be reactivated in a concentration-dependent manner. Despite distinct time-dependent autophosphorylation kinetics by monitoring the phosphorylation of amino acid residues T68, S19, S33/35, T432, in Chk2 wildtype and Chk2 mutants (T68A, T68D and Q69E) they gave identical specific activities. However, upon gel filtration of Chk2 wildtype and the mutants, only Chk2 wildtype and the T68D mutant led to the formation of a 'pure' dimer; dephosphorylated wildtype Chk2 eluted as a monomer. Transfection of HEK293 cells with Chk2 wildtype and Chk2 mutants in the absence or presence of DNA damage showed significant T68 phosphorylation already in the absence of DNA damaging reagents. Upon DNA damage, phosphorylation of additional Chk2 sites was observed (S19, S33/35). A comparison of ATM+/+ and ATM-/- cells with respect to phosphorylation of residues T68, S19, S33/35 in the absence and presence of DNA damage showed in all cases phosphorylation of T68, although signal intensity was increased ca. three-fold after DNA damage. Mass spectrometric analyses of human recombinant Chk2 isolated from bacteria and insect cells showed distinct differences. The number of phosphorylated residues in human recombinant Chk2 isolated from bacteria was 16, whereas in the case of the recombinant human Chk2 from insect cells it was 8. Except for phosphorylated amino acid T378 which was not found in the Chk2 isolated from bacteria, all other phosphorylated residues identified in human Chk2 from insect cells were present also in Chk2 from bacteria.  相似文献   

7.
Inhibition of Chk1 by activated PKB/Akt   总被引:2,自引:0,他引:2  
We have shown recently that DNA damage effector kinase Chk1 is phosphorylated in vitro by protein kinase B/Akt (PKB/Akt) on serine 280. Activation of Chk1 by DNA damage in vivo is suppressed in presence of activated PKB. In this study we show that Chk1 is phosphorylated by PKB in vivo, and that increased phosphorylation by PKB on serine 280 correlates with impairment of Chk1 activation by DNA damage. Our results indicate a likely mechanism for the negative effects that phosphorylation of serine 280 has on activation of Chk1. The Chk1 protein phosphorylated by PKB on serine 280 does not enter into protein complexes after replication arrest. Moreover, Chk1 phosphorylated by PKB fails to undergo activating phosphorylation on serine 345 by ATM/ATR. Phosphorylation by ATM/ATR and association with other checkpoint proteins are essential steps in activation of Chk1. Inhibition of these steps provides a plausible explanation for the observed attenuation of Chk1 activation by activated PKB after DNA damage.  相似文献   

8.
Cells undergo M phase arrest in response to stresses like UV irradiation or DNA damage. Stress-activated protein kinase (SAPK, also known as c-Jun N-terminal kinase, JNK) is activated by such stress stimuli. We addressed the potential effects of SAPK activation on cell cycle regulatory proteins. Activation of SAPK strongly correlated with inhibition of cdc2/cyclin B kinase, an important regulator of G2/M phase. SAPK directly phosphorylated the cdc2 regulator, cdc25c, in vitro on serine 168 (S168). This residue was highly phosphorylated in vivo in response to stress stimuli. cdc25c phosphorylated on S168 in cells lacks phosphatase activity, and expression of a S168A mutant of cdc25c reversed the inhibition of cdc2/cyclin B kinase activity by cell stress. Antibodies directed against phosphorylated S168 detect increased phosphorylation of S168 after cell stress. We conclude that SAPK regulates cdc2/cyclin B kinase following stress events by a novel mechanism involving inhibitory phosphorylation of the cdc2-activating phosphatase cdc25c on S168.  相似文献   

9.
The tumor suppressor gene Chk2 encodes a serine/threonine kinase that signals DNA damage to cell cycle checkpoints. In response to ionizing radiation, Chk2 is phosphorylated on threonine 68 (T68) by ataxia-telangiectasia mutated (ATM) protein leading to its activation. We have previously shown that polo-like kinase 3 (Plk3), a protein involved in DNA damage checkpoint and M-phase functions, interacts with and phosphorylates Chk2. When Chk2 was immunoprecipitated from Daudi cells (Plk3-deficient), it had weak kinase activity towards Cdc25C compared with Chk2 derived from T47D cells (Plk3-expressing cells). This activity was restored by addition of recombinant Plk3 in a dose-dependent manner. Plk3 phosphorylates Chk2 at two residues, serine 62 (S62) and serine 73 (S73) in vitro, and this phosphorylation facilitates subsequent phosphorylation of Chk2 on T68 by ATM in response to DNA damage. When the Chk2 mutant construct GFP-Chk2 S73A (serine 73 mutated to alanine) is transfected into cells, it no longer associates with a large complex in vivo, and manifests a significant reduction in kinase activity. It is also inefficiently activated by ATM by phosphorylation at T68 and, in turn, is unable to phosphorylate the Cdc25C peptide 200-256, which contains the inhibitory S216 target phosphorylation residue. As a consequence, tyrosine 15 (Y15) on Cdc2 remains hypophosphorylated, and there is a loss of the G2/M checkpoint. These data describe a functional role for Plk3 in a pathway linking ATM, Plk3, Chk2, Cdc25C and Cdc2 in cellular response to DNA damage.  相似文献   

10.
Activation of Cdc2-cyclin B (or M phase-promoting factor (MPF)) at the prophase/metaphase transition proceeds in two steps: dephosphorylation of Cdc2 and phosphorylation of cyclin B. We here investigated the regulation of cyclin B phosphorylation using the starfish oocyte model. Cyclin B phosphorylation is not required for Cdc2 kinase activity; both the prophase complex dephosphorylated on Cdc2 with Cdc25 and the metaphase complex dephosphorylated on cyclin B with protein phosphatase 2A display high kinase activities. An in vitro assay of cyclin B kinase activity closely mimics in vivo phosphorylation as shown by phosphopeptide maps of in vivo and in vitro phosphorylated cyclin B. We demonstrate that Cdc2 itself is the cyclin B kinase; cyclin B phosphorylation requires Cdc2 activity both in vivo (sensitivity to vitamin K3, a Cdc25 inhibitor) and in vitro (copurification with Cdc2-cyclin B, requirement of Cdc2 dephosphorylation, and sensitivity to chemical inhibitors of cyclin-dependent kinases). Furthermore, cyclin B phosphorylation occurs as an intra-M phase-promoting factor reaction as shown by the following: 1) active Cdc2 is unable to phosphorylate cyclin B associated to phosphorylated Cdc2, and 2) cyclin B phosphorylation is insensitive to enzyme/substrate dilution. We conclude that, at the prophase/metaphase transition, cyclin B is mostly phosphorylated by its own associated Cdc2 subunit.  相似文献   

11.
The phosphatase CDC25B is one of the key regulators that control entry into mitosis throughthe dephosphorylation and subsequent activation of the cyclin-dependent kinases. Here westudy the phosphorylation of CDC25B at mitosis by the kinase pEg3, a member of theKIN1/PAR-1/MARK family. Using mass spectrometry analysis we demonstrate thatCDC25B is phosphorylated in vitro by pEg3 on serine 169, a residue that lies within the Bdomain. Moreover, using phosphoepitope-specific antibodies we show that serine 169 isphosphorylated in vivo, that this phosphorylated form of CDC25B accumulates duringmitosis, and is localized to the centrosomes. This labelling is abrogated when pEg3expression is repressed by RNA interference. Taken together, these results support a model inwhich pEg3 contributes to the control of progression through mitosis by phosphorylation ofthe CDC25 phosphatases.  相似文献   

12.
In higher eukaryotic organisms, the checkpoint kinase 1 (Chk1) contributes essential functions to both cell cycle and checkpoint control. Chk1 executes these functions, in part, by targeting the Cdc25A protein phosphatase for ubiquitin-mediated proteolysis. In response to genotoxic stress, Chk1 is phosphorylated on serines 317 (S317) and 345 (S345) by the ataxia-telangiectasia-related (ATR) protein kinase. Phosphorylation of Chk1 on these C-terminal serine residues is used as an indicator of Chk1 activation in vivo. Here, we report that inhibition of Chk1 kinase activity paradoxically leads to the accumulation of S317- and S345-phosphorylated Chk1 in vivo and that ATR catalyzes Chk1 phosphorylation under these conditions. We demonstrate that Chk1 phosphorylation by ATR is antagonized by protein phosphatase 2A (PP2A). Importantly, dephosphorylation of Chk1 by PP2A is regulated, in part, by the kinase activity of Chk1. We propose that the ATR-Chk1-PP2A regulatory circuit functions to keep Chk1 in a low-activity state during an unperturbed cell division cycle but at the same time keeps Chk1 primed to respond rapidly in the event that cells encounter genotoxic stress.  相似文献   

13.
14.
We previously reported Chk1 to be phosphorylated at Ser286 and Ser301 by cyclin-dependent kinase (Cdk) 1 during mitosis [T. Shiromizu et al., Genes Cells 11 (2006) 477-485]. Here, we demonstrated that Chk1-Ser286 and -Ser301 phosphorylation also occurs in hydroxyurea (HU)-treated or ultraviolet (UV)-irradiated cells. Unlike the mitosis case, however, Chk1 was phosphorylated not only at Ser286 and Ser301 but also at Ser317 and Ser345 in the checkpoint response. Treatment with Cdk inhibitors diminished Chk1 phosphorylation at Ser286 and Ser301 but not at Ser317 and Ser345 with the latter. In vitro analyses revealed Ser286 and Ser301 on Chk1 to serve as two major phosphorylation sites for Cdk2. Immunoprecipitation analyses further demonstrated that Ser286/Ser301 and Ser317/Ser345 phosphorylation occur in the same Chk1 molecule during the checkpoint response. In addition, Ser286/Ser301 phosphorylation by Cdk2 was observed in Chk1 mutated to Ala at Ser317 and Ser345 (S317A/S345A), as well as Ser317/Ser345 phosphorylation by ATR was in S286A/S301A. Therefore, Chk1 phosphorylation in the checkpoint response is regulated not only by ATR but also by Cdk2.  相似文献   

15.
The order and fidelity of cell cycle events in mammals is intimately linked to the integrity of the Chk1 kinase-Cdc25A phosphatase pathway. Chk1 phosphorylation targets Cdc25A for destruction and, as shown here, inhibits interactions between Cdc25A and its mitotic substrate cyclin B1-Cdk1. Phosphorylation of Cdc25A on serine 178 and threonine 507 facilitates 14-3-3 binding, and Chk1 phosphorylates both residues in vitro. Mutation of T507 to alanine (T507A) enhanced the biological activity of Cdc25A. Cdc25A(T507A) was more efficient in binding to cyclin B1, activating cyclin B1-Cdk1, and promoting premature entry into mitosis. We propose that the Chk1/Cdc25A/14-3-3 pathway functions to prevent cells from entering into mitosis prior to replicating their genomes to ensure the fidelity of the cell division process.  相似文献   

16.
17.
The oncogenic Wip1 phosphatase (PPM1D) is induced upon DNA damage in a p53-dependent manner and is required for inactivation or suppression of DNA damage-induced cell cycle checkpoint arrest and of apoptosis by dephosphorylating and inactivating phosphorylated Chk2, Chk1, and ATM kinases. It has been reported that arsenic trioxide (ATO), a potent cancer chemotherapeutic agent, in particular for acute promyelocytic leukemia, activates the Chk2/p53 pathway, leading to apoptosis. ATO is also known to activate the p38 MAPK/p53 pathway. Here we show that phosphatase activities of purified Wip1 toward phosphorylated Chk2 and p38 in vitro are inhibited by ATO in a dose-dependent manner. Furthermore, DNA damage-induced phosphorylation of Chk2 and p38 in cultured cells is suppressed by ectopic expression of Wip1, and this Wip1-mediated suppression can be restored by the presence of ATO. We also show that treatment of acute promyelocytic leukemia cells with ATO resulted in induction of phosphorylation and activation of Chk2 and p38 MAPK, which are required for ATO-induced apoptosis. Importantly, this ATO-induced activation of Chk2/p53 and p38 MAPK/p53 apoptotic pathways can be enhanced by siRNA-mediated suppression of Wip1 expression, further indicating that ATO inhibits Wip1 phosphatase in vivo. These results exemplify that Wip1 is a direct molecular target of ATO.  相似文献   

18.
Degradation of Cdc25A phosphatase is an ubiquitous feature of stress. There are some discrepancies in the reported roles for different phosphorylation sites in the regulation of Cdc25A stability. Using a panel of doxycycline-inducible phosphorylation mutants we show that the stability of human Cdc25A protein is dependent upon phosphorylation at S75. In non-stressed conditions and in non-mitotic cells, Cdc25A is unstable and its stability is regulated in a Chk1-dependent manner. During mitosis, Cdc25A becomes stable and does not undergo degradation after DNA damage. We further show that Chk1 kinase regulates Cdc25A stability after UV irradiation. Similar to Chk1 kinase, p38 MAPK controls Cdc25A protein level after osmotic stress. Using phospho-specific antibodies, we find that both kinases can phosphorylate S75 and S123 in vitro. Inactivation of either Chk1 after UV-irradiation or p38 MAPK after osmotic stress prevents activation of a S phase checkpoint and S75 and S123 phosphorylation. However, introduction of stable Cdc25A (S75A or S75/123A) proteins is not sufficient to overcome this checkpoint. We propose that regulation of human Cdc25A stability by its phosphorylation at S75 may contribute to S phase checkpoint activation only in cooperation with other regulatory mechanisms.  相似文献   

19.
CDC25B phosphatases are essential regulators that control cyclin-dependent kinases activities at the entry into mitosis. In this study, we demonstrate that serine 146 is required for two crucial features of CDC25B1. It is essential for CDC25B1 to function as a mitotic inducer and to prevent CDC25B1 export from the nucleus. We also show that serine 146 is phosphorylated in vitro by CDK1-cyclin B. However, phosphorylation of CDC25B does not stimulate its phosphatase activity, and mutation of serine 146 had no effect on its catalytic activity. Serine 146 phosphorylation is proposed to be a key event in the regulation of the CDC25B function in the initiation of mammalian mitosis.  相似文献   

20.
We have shown recently that DNA damage effector kinase Chk1 is phosphorylated invitro by protein kinase B/Akt (PKB/Akt) on serine 280. Activation of Chk1 by DNAdamage in vivo is suppressed in presence of activated PKB. In this study we show thatChk1 is phosphorylated by PKB in vivo, and that increased phosphorylation by PKB onserine 280 correlates with impairment of Chk1 activation by DNA damage. Our resultsindicate a likely mechanism for the negative effects that phosphorylation of serine 280has on activation of Chk1. The Chk1 protein phosphorylated by PKB on serine 280 doesnot enter into protein complexes after replication arrest. Moreover, Chk1 phosphorylatedby PKB fails to undergo activating phosphorylation on serine 345 by ATM/ATR.Phosphorylation by ATM/ATR and association with other checkpoint proteins areessential steps in activation of Chk1. Inhibition of these steps provides a plausibleexplanation for the observed attenuation of Chk1 activation by activated PKB after DNAdamage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号