首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Identification of surrogate ligands for orphan G protein-coupled receptors   总被引:1,自引:0,他引:1  
We prepared fusion proteins with an alpha subunit of G protein Gi (Gi1alpha) of 26 orphan G protein-coupled receptors (GPCRs) and with Gsalpha of 10 orphan GPCRs, most of which had been identified from the human genome previously [FEBS Lett 520 (2002) 97]. Ligands for these fusion proteins were screened from a library consisting of approximately 1000 authentic compounds by measuring their effect on [35S]GTPgammaS binding to membrane preparations of insect Sf9 cells expressing these fusion proteins. Eleven compounds were found to act as surrogate agonists for a GPCR-Gsalpha and four GPCR-Gialpha fusion proteins, a compound as an inverse agonist for two GPCR-Gsalpha fusion proteins, and a compound as an endogenous agonist for a GPCR-Gialpha fusion protein.  相似文献   

2.
Free fatty acids (FFAs) play important physiological roles in many tissues as an energy source and as signaling molecules in various cellular processes. Elevated levels of circulating FFAs are associated with obesity, dyslipidemia, and diabetes. Here we show that GPR84, a previously orphan G protein-coupled receptor, functions as a receptor for medium-chain FFAs with carbon chain lengths of 9-14. Medium-chain FFAs elicit calcium mobilization, inhibit 3',5'-cyclic AMP production, and stimulate [35S]guanosine 5'-O-(3-thiotriphosphate) binding in a GPR84-dependent manner. The activation of GPR84 by medium-chain FFAs couples primarily to a pertussis toxin-sensitive G(i/o) pathway. In addition, we show that GPR84 is selectively expressed in leukocytes and markedly induced in monocytes/macrophages upon activation by lipopolysaccharide. Furthermore, we demonstrate that medium-chain FFAs amplify lipopolysaccharide-stimulated production of the proinflammatory cytokine interleukin-12 p40 through GPR84. Our results indicate a role for GPR84 in directly linking fatty acid metabolism to immunological regulation.  相似文献   

3.
The structurally related orphan G-protein-coupled receptors GPR7 and GPR8 are expressed in the central nervous system, and their ligands have not been identified. Here, we report the identification of the endogenous ligand for both of these receptors. We purified the peptide ligand from porcine hypothalamus using stable Chinese hamster ovary cell lines expressing human GPR8 and cloned the cDNA encoding its precursor protein. The cDNA encodes two forms of the peptide ligand with lengths of 23 and 30 amino acid residues as mature peptides. We designated the two ligands neuropeptide W-23 (NPW23) and neuropeptide W-30 (NPW30). The amino acid sequence of NPW23 is completely identical to that of the N-terminal 23 residues of NPW30. Synthetic NPW23 and NPW30 activated and bound to both GPR7 and GPR8 at similar effective doses. Intracerebroventricular administration of NPW23 in rats increased food intake and stimulated prolactin release. These findings indicate that neuropeptide W is the endogenous ligand for both GPR7 and GPR8 and acts as a mediator of the central control of feeding and the neuroendocrine system.  相似文献   

4.
Natural peptides displaying agonist activity on the orphan G protein-coupled receptor GPR54 were isolated from human placenta. These 54-, 14,- and 13-amino acid peptides, with a common RF-amide C terminus, derive from the product of KiSS-1, a metastasis suppressor gene for melanoma cells, and were therefore designated kisspeptins. They bound with low nanomolar affinities to rat and human GPR54 expressed in Chinese hamster ovary K1 cells and stimulated PIP(2) hydrolysis, Ca(2+) mobilization, arachidonic acid release, ERK1/2 and p38 MAP kinase phosphorylation, and stress fiber formation but inhibited cell proliferation. Human GPR54 was highly expressed in placenta, pituitary, pancreas, and spinal cord, suggesting a role in the regulation of endocrine function. Stimulation of oxytocin secretion after kisspeptin administration to rats confirmed this hypothesis.  相似文献   

5.
Obestatin does not activate orphan G protein-coupled receptor GPR39   总被引:10,自引:0,他引:10  
Recently, the ligand of the orphan G protein-coupled receptor GPR39 has been identified as obestatin, a 23-amino acid peptide derived from the ghrelin precursor protein. We used two methods to study the possible activation of GPR39 by obestatin: cAMP measurements based on a luminescent reporter gene and a fluorometric Ca(2+) flux method. The former was similar to that reported in the original publication of Zhang et al. [J.V. Zhang, P.G. Ren, O. Avsian-Kretchmer, C.W. Luo, R. Rauch, C. Klein, Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effects on food intake, Science 310 (2005) 996-999]. The latter method used promiscuous as well as chimaeric G-proteins commonly used to couple orphan G protein-coupled receptors to the phospholipase C pathway, that leads to intracellular Ca(2+) rise. We could, however, not demonstrate activation of the GPR39 receptor by obestatin via any of these signal transduction pathways. We could activate GPR39 by high concentrations of Zn(2+), demonstrating cell surface expression of a functional receptor that could elicit a Ca(2+) response. The Zn(2+) response was not affected by obestatin. The identity of the native ligand for GPR39 remains to be elucidated.  相似文献   

6.
Local catabolism of the essential amino acid tryptophan is considered an important mechanism in regulating immunological and neurological responses. The kynurenine pathway is the main route for the non-protein metabolism of tryptophan. The intermediates of the kynurenine pathway are present at micromolar concentrations in blood and are regulated by inflammatory stimuli. Here we show that GPR35, a previously orphan G protein-coupled receptor, functions as a receptor for the kynurenine pathway intermediate kynurenic acid. Kynurenic acid elicits calcium mobilization and inositol phosphate production in a GPR35-dependent manner in the presence of G(qi/o) chimeric G proteins. Kynurenic acid stimulates [35S]guanosine 5'-O-(3-thiotriphosphate) binding in GPR35-expressing cells, an effect abolished by pertussis toxin treatment. Kynurenic acid also induces the internalization of GPR35. Expression analysis indicates that GPR35 is predominantly detected in immune cells and the gastrointestinal tract. Furthermore, we show that kynurenic acid inhibits lipopolysaccharide-induced tumor necrosis factor-alpha secretion in peripheral blood mononuclear cells. Our results suggest unexpected signaling functions for kynurenic acid through GPR35 activation.  相似文献   

7.
Sphingosylphosphorylcholine (SPC) and lysophosphatidylcholine (LPC) are bioactive lipid molecules involved in numerous biological processes. We have recently identified ovarian cancer G protein-coupled receptor 1 (OGR1) as a specific and high affinity receptor for SPC, and G2A as a receptor with high affinity for LPC, but low affinity for SPC. Among G protein-coupled receptors, GPR4 shares highest sequence homology with OGR1 (51%). In this work, we have identified GPR4 as not only another high affinity receptor for SPC, but also a receptor for LPC, albeit of lower affinity. Both SPC and LPC induce increases in intracellular calcium concentration in GPR4-, but not vector-transfected MCF10A cells. These effects are insensitive to treatment with BN52021, WEB-2170, and WEB-2086 (specific platelet activating factor (PAF) receptor antagonists), suggesting that they are not mediated through an endogenous PAF receptor. SPC and LPC bind to GPR4 in GPR4-transfected CHO cells with K(d)/SPC = 36 nm, and K(d)/LPC = 159 nm, respectively. Competitive binding is elicited only by SPC and LPC. Both SPC and LPC activate GPR4-dependent activation of serum response element reporter and receptor internalization. Swiss 3T3 cells expressing GPR4 respond to both SPC and LPC, but not sphingosine 1-phosphate (S1P), PAF, psychosine (Psy), glucosyl-beta1'1-sphingosine (Glu-Sph), galactosyl-beta1'1-ceramide (Gal-Cer), or lactosyl-beta1'1-ceramide (Lac-Cer) to activate extracellular signal-regulated kinase mitogen-activated protein kinase in a concentration- and time-dependent manner. SPC and LPC stimulate DNA synthesis in GPR4-expressing Swiss 3T3 cells. Both extracellular signal-regulated kinase activation and DNA synthesis stimulated by SPC and LPC are pertussis toxin-sensitive, suggesting the involvement of a G(i)-heterotrimeric G protein. In addition, GPR4 expression confers chemotactic responses to both SPC and LPC in Swiss 3T3 cells. Taken together, our data indicate that GPR4 is a receptor with high affinity to SPC and low affinity to LPC, and that multiple cellular functions can be transduced via this receptor.  相似文献   

8.
9.
Continued discovery of ligands for G protein-coupled receptors   总被引:1,自引:0,他引:1  
Lee DK  George SR  O'Dowd BF 《Life sciences》2003,74(2-3):293-297
G protein-coupled receptors are under intense scrutiny as potential targets of drug research, which stems mostly from the sheer size and diversity of this receptor family as well as the recognized high levels of specificity and sensitivity attainable by drugs targeting these receptors. The continued discovery of genes encoding G protein-coupled receptors has provided an extensive reserve of potential therapeutic targets. However, testing experimental therapeutic agents at these receptors requires a high degree of receptor characterization, beginning with the identity of an endogenous ligand. Often, low levels of sequence identity of a newly identified receptor to previously characterized receptors preclude the prompt identification of a ligand. In such cases, innovative techniques commonly referred to as reverse pharmacology have been employed to ascertain the ligand's identity for these "orphan" receptors. To date over 30 endogenous ligands, both novel and previously known, have been paired with orphan G protein-coupled receptors. Here, we briefly summarize the recent identification of neuropeptides W and B and carboxylic acid anions for their respective receptors GPR7, GPR8 and GPR40, GPR41, GPR43.  相似文献   

10.
Hydroxy fatty acids are critical lipid mediators involved in various pathophysiologic functions. We cloned and identified GPR31, a plasma membrane orphan G protein-coupled receptor that displays high affinity for the human 12-lipoxygenase-derived product 12-(S)-hydroxy-5,8,10,14-eicosatetraenoic acid (HETE). Thus, GPR31 is named 12-(S)-HETE receptor (12-HETER) in this study. The cloned 12-HETER demonstrated high affinity binding for 12-(S)-[(3)H]HETE (K(d) = 4.8 ± 0.12 nm). Also, 12-(S)-HETE efficiently and selectively stimulated GTPγS coupling in the membranes of 12-HETER-transfected cells (EC(50) = 0.28 ± 1.26 nm). Activating GTPγS coupling with 12-(S)-HETE proved to be both regio- and stereospecific. Also, 12-(S)-HETE/12-HETER interactions lead to activation of ERK1/2, MEK, and NFκB. Moreover, knocking down 12-HRTER specifically inhibited 12-(S)-HETE-stimulated cell invasion. Thus, 12-HETER represents the first identified high affinity receptor for the 12-(S)-HETE hydroxyl fatty acids.  相似文献   

11.
Olfactory receptors are the largest group of orphan G protein-coupled receptors with an infinitely small number of agonists identified out of thousands of odorants. The de-orphaning of olfactory receptor (OR) is complicated by its combinatorial odorant coding and thus requires large scale odorant and receptor screening and establishing receptor-specific odorant profiles. Here, we report on the stable reconstitution of OR-specific signaling in HeLa/Olf cells via G protein alphaolf and adenylyl cyclase type-III to the Ca2+ influx-mediating olfactory cyclic nucleotide-gated CNGA2 channel. We demonstrate the central role of Galphaolf in odorant-specific signaling out of OR. The employment of the non-typical G protein alpha15 dramatically altered the odorant specificities of 3 of 7 receptors that had been characterized previously by different groups. We further show for two OR that an odorant may be an agonist or antagonist, depending on the G protein used. HeLa/Olf cells proved suitable for high-throughput screening in fluorescence-imaging plate reader experiments, resulting in the de-orphaning of two new OR for the odorant (-)citronellal from an expression library of 93 receptors. To demonstrate the G protein dependence of its odorant response pattern, we screened the most sensitive (-)citronellal receptor Olfr43 versus 94 odorants simultaneously in the presence of Galpha15 or Galphaolf. We finally established an EC50-ranking odorant profile for Olfr43 in HeLa/Olf cells. In summary, we conclude that, in heterologous systems, odorants may function as agonists or antagonists, depending on the G protein used. HeLa/Olf cells provide an olfactory model system for functional expression and de-orphaning of OR.  相似文献   

12.
13.
The central nervous system octapeptide, neuropeptide FF (NPFF), is believed to play a role in pain modulation and opiate tolerance. Two G protein-coupled receptors, NPFF1 and NPFF2, were isolated from human and rat central nervous system tissues. NPFF specifically bound to NPFF1 (K(d) = 1.13 nm) and NPFF2 (K(d) = 0.37 nm), and both receptors were activated by NPFF in a variety of heterologous expression systems. The localization of mRNA and binding sites of these receptors in the dorsal horn of the spinal cord, the lateral hypothalamus, the spinal trigeminal nuclei, and the thalamic nuclei supports a role for NPFF in pain modulation. Among the receptors with the highest amino acid sequence homology to NPFF1 and NPFF2 are members of the orexin, NPY, and cholecystokinin families, which have been implicated in feeding. These similarities together with the finding that BIBP3226, an anorexigenic Y1 receptor ligand, also binds to NPFF1 suggest a potential role for NPFF1 in feeding. The identification of NPFF1 and NPFF2 will help delineate their roles in these and other physiological functions.  相似文献   

14.
15.
GPR20 was isolated as an orphan G protein-coupled receptor from genomic DNA by PCR amplification. Although GPR20 was closely related to nucleotide or lipid receptors, the functional role of this receptor, as well as its endogenous ligand, remains unclear. Here we demonstrate that GPR20 is constitutively active in the absence of ligand, leading to continuous activation of its coupled G proteins. When GPR20 was exogenously expressed in HEK293 cells, both the basal level and the prostaglandin E(2)-induced production of cAMP were significantly decreased. A remarkable increase in [(35)S]guanosine 5'-(gamma-thio)triphosphate (GTPgammaS) binding to membrane preparations was also observed in GPR20-expressing cells. These effects of GPR20 overexpression were diminished in cells treated with pertussis toxin, suggesting that the expression of GPR20 results in the activation of G(i/o) proteins. Involvement of GPR20 in the activation of G(i/o) proteins was also supported by evidence that the disruption of a conserved DRY motif in GPR20 attenuated both [(35)S]GTPgammaS incorporation and inhibition of the prostaglandin E(2)-induced cAMP production. Knockdown of GPR20 in PC12h cells resulted in an elevation of the basal cAMP level, suggesting that the endogenous GPR20 achieves a constitutively or spontaneously active conformation. Furthermore, enhancement of [(3)H]thymidine incorporation was also observed in the GPR20-silencing cells, implying that the GPR20 expression seems to attenuate PC12h cell growth. Taken together, these data indicate that GPR20 constitutively activates G(i) proteins without ligand stimulation. The receptor may be involved in cellular processes, including control of intracellular cAMP levels and mitogenic signaling.  相似文献   

16.
GPR26 and GPR78 are orphan GPCRs (oGPCRs) that share 51% amino acid sequence identity and are widely expressed in selected tissues of the human brain as well as the developing and adult mouse brain. Investigation of the functional activity of GPR26 and GPR78 via expression in HEK293 cells showed that both proteins are constitutively active and coupled to elevated cAMP production. Accordingly, in yeast, GPR26 demonstrated apparent agonist-independent coupling to a chimeric Gpa1 protein in which the 5 C-terminal amino acids were from Galphas. A comparison of the proteins revealed an atypical glutamine residue in GPR78 in place of the conserved arginine residue (R3.50) in the so-called DRY box. Site-directed mutants R3.50 in GPR26 were constructed and retained their constitutive activity suggesting that these 2 receptors activate G proteins in a manner that is distinct from other group 1 GPCRs.  相似文献   

17.
18.
A variety of functional assays are available for agonist or antagonist screening of G protein-coupled receptors (GPCRs), but it is a priori not predictable which assay is the most suitable to identify agonists or antagonists of GPCRs with therapeutic value in humans. More specifically, it is not known how a given set of GPCR agonists compares in different functional assays with respect to potency and efficacy and whether the level of the signaling cascade that is analyzed has any impact on the detection of agonistic responses. To address this question, the authors used the recently cloned human S1P(5) receptor as a model and compared a set of 3 lipid ligands (sphingosine 1-phosphate [S1P], dihydro sphingosine 1-phosphate [dhS1P], and sphingosine) in 5 different functional assays: GTPgammaS binding, inhibition of adenylyl cyclase activity, mobilization of intracellular Ca(2+) via the FLIPR and aequorin technology, and MAP kinase (ERK1/2) activation. S1P induced agonistic responses in all except the ERK1/2 assays with EC(50) values varying by a factor of 10. Whereas dhS1P was identified as a partial agonist in the GTPgammaS assay, it behaved as a full agonist in all other settings. Sphingosine displayed partial agonistic activity exclusively in GTPgammaS binding assays. The findings suggest that assays in a given cellular background may vary significantly with respect to suitability for agonist finding and that ligands producing a response may not readily be detectable in all agonist assays.  相似文献   

19.
Alternative splicing is an important mechanism to generate proteome diversity in higher eukaryotic organisms. We searched for splice variants of the human Adhesion family of G protein-coupled receptors (GPCRs) using mRNA sequences and expressed sequence tags. The results presented here describe 53 human splice variants among the 33 Adhesion GPCRs. Many of these variants appear to be coding for "functional" proteins (29) while the others are seemingly "non-functional" (24). Novel functional splice variants were found for: CD97, CELR3, EMR2, EMR3, GPR56, GPR110, GPR112-GPR114, GPR116, GPR123-GPR126, GPR133, HE6, and LEC1-LEC3. Splice variants for GPR116, GPR125, GPR126, and HE6 were found conserved in other species. Several of the functional splice variants lack one or more of the functional domains that are found in the N-termini of these receptors. These functional domains are likely to affect ligand binding or interaction with other proteins and these novel splice variants may have important roles for the specificity of interactions between these receptors and extracellular molecules. Another type of splice variants found here lacks a GPCR proteolytic site (GPS). The GPS domain has been shown to be essential for the proteolytic cleavage of the receptors N-termini and for cellular surface expression. We suggest that these alternative splice variants may be crucial for the function of the receptors while the seemingly non-functional splice variants may be a part of a regulative mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号