首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The clathrin-associated protein complexes are heterotetrameric structures believed to interact with clathrin and with membrane components of mammalian coated pits and coated vesicles. I have identified a yeast homolog of the mammalian beta-type large chains, suggesting the existence in yeast cells of clathrin-associated protein complexes. A sequence comparison between the putative yeast beta-type chain and its mammalian counterparts shows that their amino-terminal domains are related over their entire length and that their carboxyl-terminal domains diverge completely. This observation is consistent with our earlier proposal (T. Kurchhausen et al., Proc. Natl. Acad. Sci. USA 86:2612-2616, 1989) for the bifunctional-domain organization of the large chains, in which the invariant amino-terminal region interacts with conserved proteins of the coat while the variable carboxyl-terminal domain interacts with different membrane components of coated pits and coated vesicles.  相似文献   

2.
The antifungal activity of the PR-5 family of plant defense proteins has been suspected to involve specific plasma membrane component(s) of the fungal target. Osmotin is a tobacco PR-5 family protein that induces apoptosis in the yeast Saccharomyces cerevisiae. We show here that the protein encoded by ORE20/PHO36 (YOL002c), a seven transmembrane domain receptor-like polypeptide that regulates lipid and phosphate metabolism, is an osmotin binding plasma membrane protein that is required for full sensitivity to osmotin. PHO36 functions upstream of RAS2 in the osmotin-induced apoptotic pathway. The mammalian homolog of PHO36 is a receptor for the hormone adiponectin and regulates cellular lipid and sugar metabolism. Osmotin and adiponectin, the corresponding "receptor" binding proteins, do not share sequence similarity. However, the beta barrel domain of both proteins can be overlapped, and osmotin, like adiponectin, activates AMP kinase in C2C12 myocytes via adiponectin receptors.  相似文献   

3.
Although Atg32 is essential for mitophagy in yeast, no mammalian homolog has been identified. Here, we demonstrate that BCL2L13 (BCL2-like 13 [apoptosis facilitator]) is a functional mammalian homolog of Atg32. First, we hypothesized that a mammalian mitophagy receptor will share certain molecular features with Atg32. Using the molecular profile of Atg32 as a search tool, we screened public databases for novel Atg32 functional homologs and identified BCL2L13. BCL2L13 induces mitochondrial fragmentation and mitophagy in HEK293 cells. In BCL2L13, the BH domains are important for fragmentation, whereas the WXXI motif, an LC3 interacting region, is needed for mitophagy. BCL2L13 induces mitochondrial fragmentation and mitophagy even in the absence of DNM1L/Drp1 and PARK2/Parkin, respectively. BCL2L13 is indispensable for mitochondrial damage-induced fragmentation and mitophagy. Furthermore, BCL2L13 induces mitophagy in Atg32-deficient yeast. Induction and/or phosphorylation of BCL2L13 may regulate its activity. Our findings thus open a new chapter in mitophagy research.  相似文献   

4.
To begin the physical characterization of eukaryotic initiation factor (eIF) 2A, a translation initiation factor that binds Met-tRNA(i), tryptic peptides from rabbit reticulocyte eIF2A were analyzed to obtain amino acid sequence information. Sequences for 8 peptides were matched to three different expressed sequence tag clones. The sequence predicted for eIF2A is 585 amino acids. Matching of the cDNA sequence to the human genome revealed that the eIF2A mRNA is made up of 15 or 16 exons, and the gene is contained on chromosome 3. A homolog in Saccharomyces cerevisiae was identified, YGR054W, which is a non-essential gene. Hemagglutinin-tagged yeast eIF2A localizes on both 40 S and 80 S ribosomes. A knockout of both eIF2A and eIF5B yielded a "synthetically sick" yeast strain with a severe slow growth phenotype. The phenotype of this double mutant and the biochemical localization suggest that eIF2A participates in translation initiation. eIF2A does not appear to participate in re-initiation as the DeltaeIF2A strain shows the same level of GCN4 induction with amino acid starvation as seen in wild type yeast. The lack of any apparent phenotype in the DeltaeIF2A strain suggests that eIF2A functions in a minor pathway, perhaps internal initiation or in the translation of a small number of specific mRNAs.  相似文献   

5.
The full-length of a two-component gene NTHK1 (Nicotiana tabacum histidine kinase-l) was isolated from tobacco (N. tabacum var. Xanthi) using a previously obtained NTHK1 cDNA fragment as a probe. Sequence analysis revealed that NTHK1 shared high homology with LeETR4 from tomato and encoded an ethylene- receptor homolog. The predicted NTHK1 protein had a putative signal peptide, three transmembrane domains, a histidine kinase domain and a receiver domain. The putative autophosphorylation site at His378 and the phosphate receiver site at Asp689 were also identified. By using the in situ hybridization technique, NTHK1 mRNA was detected during flower organ development. It is also highly expressed in the processes of pollen formation and embryo development. The expression of NTHK1 in response to wounding and other stresses was investigated using competitive RT-PCR. The results demonstrated that NTHK1 was inducible upon wounding (cutting). Floating of the cut leaf pieces in 0.5× MS, with shaking, led to a relatively rapid and strong expression. This phenomenon was confirmed by the in situ hybridization results. In addition to the up-regulation by wounding, NTHK1 expression was also induced following NaCl and PEG treatment, indicating a possible role for NTHK1 in multiple stress responses. Received: 28 June 2000 / Accepted: 1 August 2000  相似文献   

6.
The Ipl1 protein kinase is essential for proper chromosome segregation and cell viability in the budding yeast Saccharomyces cerevisiae. We have previously shown that the temperature-sensitive growth phenotype of conditional ipl1-1ts mutants can be suppressed by a partial loss-of-function mutation in the GLC7 gene, which encodes the catalytic subunit (PP1C) of protein phosphatase 1, thus suggesting that this enzyme acts in opposition to the Ipl1 protein kinase in regulating yeast chromosome segregation. We report here that the Glc8 protein, which is related in primary sequence to mammalian inhibitor 2, also participates in this regulation. Like inhibitor 2, the Glc8 protein is heat stable, exhibits anomalous electrophoretic mobility, and functions in vitro as an inhibitor of yeast as well as rabbit skeletal muscle PP1C. Interestingly, overexpression as well as deletion of the GLC8 gene results in a partial suppression of the temperature-sensitive growth phenotype of ipl1ts mutants and also moderately reduces the amount of protein phosphatase 1 activity which is assayable in crude yeast lysates. In addition, the chromosome missegregation phenotype caused by an increase in the dosage of GLC7 is totally suppressed by the glc8-delta 101::LEU2 deletion mutation. These findings together suggest that the Glc8 protein is involved in vivo in the activation of PP1C and that when the Glc8 protein is overproduced, it may also inhibit PP1C function. Furthermore, site-directed mutagenesis studies of GLC8 suggest that Thr-118 of the Glc8 protein, which is equivalent to Thr-72 of inhibitor 2, may play a central role in the ability of this protein to activate and/or inhibit PP1C in vivo.  相似文献   

7.
8.
KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene   总被引:136,自引:0,他引:136  
M D Rose  L M Misra  J P Vogel 《Cell》1989,57(7):1211-1221
The yeast KAR2 gene was isolated by complementation of a mutation that blocks nuclear fusion. The predicted KAR2 protein sequence is most homologous to mammalian BiP/GRP78 and has several structural features in common with it: a functional secretory signal sequence, a yeast endoplasmic reticulum retention signal (HDEL) at the carboxyl terminus, and the absence of potential N-linked glycosylation sites. Moreover KAR2 is regulated like BiP/GRP78: the level of mRNA is increased by drug treatments and mutations that cause accumulation of secretory precursors in the endoplasmic reticulum. However, unlike BiP/GRP78, KAR2 is also regulated by heat shock. Deletion of the KAR2 gene generated a recessive lethal mutation, showing that BiP/GRP78 function is required for cell viability.  相似文献   

9.
10.
Autophagy is a catabolic membrane-trafficking process that occurs in all eukaryotic cells and leads to the hydrolytic degradation of cytosolic material in the vacuolar or lysosomal lumen. Mitophagy, a selective form of autophagy targeting mitochondria, is poorly understood at present. Several recent reports suggest that mitophagy is a selective process that targets damaged mitochondria, whereas other studies imply a role for mitophagy in cell death processes. In a screen for protein phosphatase homologs that functionally interact with the autophagy-dedicated protein kinase Atg1p in yeast, we have identified Aup1p, encoded by Saccharomyces cerevisiae reading frame YCR079w. Aup1p is highly similar to a family of protein phosphatase homologs in animal cells that are predicted to localize to mitochondria based on sequence analysis. Interestingly, we found that Aup1p localizes to the mitochondrial intermembrane space and is required for efficient mitophagy in stationary phase cells. Viability studies demonstrate that Aup1p is required for efficient survival of cells in prolonged stationary phase cultures, implying a pro-survival role for mitophagy under our working conditions. Our data suggest that Aup1p may be part of a signal transduction mechanism that marks mitochondria for sequestration into autophagosomes.  相似文献   

11.
MOTIVATION: The antizymes (AZ) are proteins that regulate cellular polyamine pools in metazoa. To search for remote homologs in single-celled eukaryotes, we used computer software based on hidden Markov models. The most divergent homolog detected was that of the fission yeast Schizosaccharomyces pombe. Sequence identities between S.POMBE: AZ and known AZs are as low as 18-22% in the most conserved C-terminal regions. The authenticity of the S.POMBE: AZ is validated by the presence of a conserved nucleotide sequence that, in metazoa, promotes a +1 programmed ribosomal frameshift required for AZ expression. However, no homolog was detected in the completed genome of the budding yeast Saccharomyces cerevisiae. Procedural details and supplementary information can be found at http://itsa.ucsf.edu/ approximately czhu/AZ.  相似文献   

12.
13.
In the budding yeast Saccharomyces cerevisiae, a number of PRP genes known to be involved in pre-mRNA processing have been genetically identified and cloned. Three PRP genes (PRP2, PRP16, and PRP22) were shown to encode putative RNA helicases of the family of proteins with DEAH boxes. However, any such splicing factor containing the helicase motifs in vertebrates has not been identified. To identify human homologs of this family, we designed PCR primers corresponding to the highly conserved region of the DEAH box protein family and successfully amplified five cDNA fragments, using HeLa poly(A)+ RNA as a substrate. One fragment, designated HRH1 (human RNA helicase 1), is highly homologous to Prp22, which was previously shown to be involved in the release of spliced mRNAs from the spliceosomes. Expression of HRH1 in a S. cerevisiae prp22 mutant can partially rescue its temperature-sensitive phenotype. These results strongly suggest that HRH1 is a functional human homolog of the yeast Prp22 protein. Interestingly, HRH1 but not Prp22 contains an arginine- and serine-rich domain (RS domain) which is characteristic of some splicing factors, such as members of the SR protein family. We could show that HRH1 can interact in vitro and in the yeast two-hybrid system with members of the SR protein family through its RS domain. We speculate that HRH1 might be targeted to the spliceosome through this interaction.  相似文献   

14.
15.
Diverse and precise control is essential for eukaryotic gene expression. This is accomplished through the recruitment of a myriad of proteins to a nascent messenger RNA (mRNA) to mediate modifications, such as capping, splicing, 3′-end processing, and export. Despite being important for every cell, however, the mechanism by which the formation of diverse messenger ribonucleoprotein (mRNP) particles contributes to maintaining intricate systems in the multicellular organism remains incompletely defined. We identified and characterized a mutant gene named erecta mRNA under-expressed (emu) that leads to the defective mRNA accumulation of ERECTA, a developmental regulator in the model plant Arabidopsis thaliana. EMU encodes a protein homologous to a component of the THO complex that is required for the generation of functional mRNPs. Further analysis suggested that EMU is genetically associated with SERRATE, HYPONASTIC LEAVES1, and ARGONAUTE1, which are required for proper RNA maturation or action. Furthermore, mutations in another THO-related gene led to embryonic lethality. These findings support the presence and importance of the THO-related complex in plants as well as yeast and vertebrates.  相似文献   

16.
S-methyl-l-methionine (SMM) is ubiquitous in the tissues of flowering plants, but its precise function remains unknown. It is both a substrate and an inhibitor of the pyridoxal 5-phosphate-dependent enzyme 1-aminocyclopropane-1-carboxylate (ACC) synthase, due to its structural similarity to the natural substrate of this enzyme, S-adenosyl-l-methionine. In the reaction with ACC synthase, SMM can either be transaminated to yield 4-dimethylsulfonium-2-oxobutyrate; converted to α-ketobutyrate, ammonia, and dimethylsulfide; or inactivate the enzyme covalently after elimination of dimethylsulfide. These results suggest a previously unrecognized role for SMM in the regulation of ACC synthase activity in plants.  相似文献   

17.
AP17 and AP19 are the smallest polypeptide chain components of AP-2 and AP-1, the clathrin-associated protein complexes found in coated structures of the plasma membrane and Golgi apparatus of mammalian cells. cDNA clones representing the entire coding sequence of AP17 and AP19 were isolated from rat and mouse brain cDNA libraries, respectively. Determination of their nucleotide sequence predicts proteins of 142 and 158 amino acids with Mr 17,018 and 18,733. A sequence comparison of rat brain AP17 with mouse brain AP19 demonstrates that the small chains are highly related. A computer search for other related proteins has uncovered in yeast a previously unknown gene whose DNA sequence encodes a protein homologous to the small chain of AP complexes. The yeast sequence predicts Yap17p, a protein with 147 amino acids and a Mr of 17,373 that is slightly more related to the mammalian AP17 chain than to its AP19 counterpart.  相似文献   

18.
Ultraviolet radiation induces DNA damage products, largely in the form of pyrimidine dimers, that are both toxic and mutagenic. In most organisms, including Arabidopsis, these lesions are repaired both through a dimer-specific photoreactivation mechanism and through a less efficient light-independent mechanism. Several mutants defective in this "dark repair" pathway have been previously described. The mechanism of this repair has not been elucidated, but is thought to be homologous to the nucleotide excision repair mechanisms found in other eukaryotes. Here we report the complementation of the Arabidopsis uvh1 dark repair mutant with the Arabidopsis homolog of the yeast nucleotide excision repair gene RAD1, which encodes one of the subunits of the 5'-repair endonuclease. The uvh1-2 mutant allele carries a glycine-->aspartate amino acid change that has been previously identified to produce a null allele of RAD1 in yeast. Although Arabidopsis homologs of genes involved in nucleotide excision repair are readily identified by searching the genomic database, it has not been established that these homologs are actually required for dark repair in plants. The complementation of the Arabidopsis uvh1 mutation with the Arabidopsis RAD1 homolog clearly demonstrates that the mechanism of nucleotide excision repair is conserved among the plant, animal, and fungal kingdoms.  相似文献   

19.

Background

Prion-based diseases are incurable transmissible neurodegenerative disorders affecting animals and humans.

Methodology/Principal Findings

Here we report the discovery of the in vivo antiprion activity of Guanabenz (GA), an agonist of α2-adrenergic receptors routinely used in human medicine as an antihypertensive drug. We isolated GA in a screen for drugs active in vivo against two different yeast prions using a previously described yeast-based two steps assay. GA was then shown to promote ovine PrPSc clearance in a cell-based assay. These effects are very specific as evidenced by the lack of activity of some GA analogues that we generated. GA antiprion activity does not involve its agonist activity on α2-adrenergic receptors as other chemically close anti-hypertensive agents possessing related mechanism of action were found inactive against prions. Finally, GA showed activity in a transgenic mouse-based in vivo assay for ovine prion propagation, prolonging slightly but significantly the survival of treated animals.

Conclusion/Significance

GA thus adds to the short list of compounds active in vivo in animal models for the treatment of prion-based diseases. Because it has been administrated for many years to treat hypertension on a daily basis, without major side-effects, our results suggest that it could be evaluated in human as a potential treatment for prion-based diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号