首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pollen tubes show active cytoplasmic streaming. We isolated organelles from pollen tubes and tested their ability to slide along actin bundles in characean cell models. Here, we show that sliding of organelles was ATP-dependent and that motility was lost after N-ethylmaleimide or heat treatment of organelles. On the other hand, cytoplasmic streaming in pollen tube was inhibited by either N-ethylmaleimide or heat treatment. These results strongly indicate that cytoplasmic streaming in pollen tubes is supported by the "actomyosin"-ATP system. The velocity of organelle movement along characean actin bundles was much higher than that of the native streaming in pollen tubes. We suggested that pollen tube "myosin" has a capacity to move at a velocity of the same order of magnitude as that of characean myosin. Moreover, the motility was high at Ca2+ concentrations lower than 0.18 microM (pCa 6.8) but was inhibited at concentration higher than 4.5 microM (pCa 5.4). In conclusion, cytoplasmic streaming in pollen tubes is suggested to be regulated by Ca2+ through "myosin" inactivation.  相似文献   

2.
Plant myosin XI functions as a motor that generates cytoplasmic streaming in plant cells. Although cytoplasmic streaming is known to be regulated by intracellular Ca(2+) concentration, the molecular mechanism underlying this control is not fully understood. Here, we investigated the mechanism of regulation of myosin XI by Ca(2+) at the molecular level. Actin filaments were easily detached from myosin XI in an in vitro motility assay at high Ca(2+) concentration (pCa 4) concomitant with the detachment of calmodulin light chains from the neck domains. Electron microscopic observations showed that myosin XI at pCa 4 shortened the neck domain by 30%. Single-molecule analysis revealed that the step size of myosin XI at pCa 4 was shortened to 27 nm under low load and to 22 nm under high load compared with 35 nm independent of the load for intact myosin XI. These results indicate that modulation of the mechanical properties of the neck domain is a key factor for achieving the Ca(2+)-induced regulation of cytoplasmic streaming.  相似文献   

3.
MYR-1, a mammalian class I myosin, consisting of a heavy chain and 4-6 associated calmodulins, is represented by the 130-kDa myosin I (or MI(130)) from rat liver. MI(130) translocates actin filaments in vitro in a Ca(2+)-regulated manner. A decrease in motility observed at higher Ca(2+) concentrations has been attributed to calmodulin dissociation. To investigate mammalian myosin I regulation, we have coexpressed in baculovirus calmodulin and an epitope-tagged 85-kDa fragment representing the amino-terminal catalytic "motor" domain and the first calmodulin-binding IQ domain of rat myr-1; we refer to this truncated molecule here as MI(1IQ). Association of calmodulin to MI(1IQ) is Ca(2+)-insensitive. MI(1IQ) translocates actin filaments in vitro at a rate resembling MI(130), but unlike MI(130), does not exhibit sensitivity to 0.1-100 micrometer Ca(2+). In addition to demonstrating successful expression of a functional truncated mammalian myosin I in vitro, these results indicate that: 1) Ca(2+)-induced calmodulin dissociation from MI(130) in the presence of actin is not from the first IQ domain, 2) velocity is not affected by the length of the IQ region, and 3) the Ca(2+) sensitivity of actin translocation exhibited by MI(130) involves 1 or more of the other 5 IQ domains and/or the carboxyl tail.  相似文献   

4.
Myosin X is a member of the diverse myosin superfamily that is ubiquitously expressed in various mammalian tissues. Although its association with actin in cells has been shown, little is known about its biochemical and mechanoenzymatic function at the molecular level. We expressed bovine myosin X containing the entire head, neck, and coiled-coil domain and purified bovine myosin X in Sf9 cells. The Mg(2+)-ATPase activity of myosin X was significantly activated by actin with low K(ATP). The actin-activated ATPase activity was reduced at Ca(2+) concentrations above pCa 5 in which 1 mol of calmodulin light chain dissociates from the heavy chain. Myosin X translocates F-actin filaments with the velocity of 0.3 microm/s with the direction toward the barbed end. The actin translocating activity was inhibited at concentrations of Ca(2+) at pCa 6 in which no calmodulin dissociation takes place, suggesting that the calmodulin dissociation is not required for the inhibition of the motility. Unlike class V myosin, which shows a high affinity for F-actin in the presence of ATP, the K(actin) of the myosin X ATPase was much higher than that of myosin V. Consistently nearly all actin dissociated from myosin X in the presence of ATP. ADP did not significantly inhibit the actin-activated ATPase activity of myosin X, suggesting that the ADP release step is not rate-limiting. These results suggest that myosin X is a nonprocessive motor. Consistently myosin X failed to support the actin translocation at low density in an in vitro motility assay where myosin V, a processive motor, supports the actin filament movement.  相似文献   

5.
Myosin V is a calmodulin-binding motor protein. The dissociation of single calmodulin molecules from individual myosin V molecules at 1 microM Ca(2+) correlates with a reduction in sliding velocity in an in vitro motility assay. The dissociation of two calmodulin molecules at 5 microM Ca(2+) correlates with a detachment of actin filaments from myosin V. To mimic the regulation of myosin V motility by Ca(2+) in a cell, caged Ca(2+) coupled with a UV flash system was used to produce Ca(2+) transients. During the Ca(2+) transient, myosin V goes through the functional cycle of reduced sliding velocity, actin detachment and reattachment followed by the recovery of the sliding velocity. These results indicate that myosin V motility is regulated by Ca(2+) through a reduction in actin-binding affinity resulting from the dissociation of single calmodulin molecules.  相似文献   

6.
Cellular and intracellular motile events in plants are susceptible to SH reagents such as N-ethylmaleimide (NEM). It has long been believed that the target of the reagent is myosin. We compared the effect of NEM on the motile and ATPase activities of skeletal muscle myosin with that on plant myosin using characean algal myosin. It was found that the motile activity of myosin prepared from NEM-treated C. corallina decreased to a level accountable for the decrease in the velocity of cytoplasmic streaming but it was also found that Chara myosin was far less susceptible to NEM than skeletal muscle myosin.  相似文献   

7.
Myosin VI is expressed in a variety of cell types and is thought to play a role in membrane trafficking and endocytosis, yet its motor function and regulation are not understood. The present study clarified mammalian myosin VI motor function and regulation at a molecular level. Myosin VI ATPase activity was highly activated by actin with K(actin) of 9 microm. A predominant amount of myosin VI bound to actin in the presence of ATP unlike conventional myosins. K(ATP) was much higher than those of other known myosins, suggesting that myosin VI has a weak affinity or slow binding for ATP. On the other hand, ADP markedly inhibited the actin-activated ATPase activity, suggesting a high affinity for ADP. These results suggested that myosin VI is predominantly in a strong actin binding state during the ATPase cycle. p21-activated kinase 3 phosphorylated myosin VI, and the site was identified as Thr(406). The phosphorylation of myosin VI significantly facilitated the actin-translocating activity of myosin VI. On the other hand, Ca(2+) diminished the actin-translocating activity of myosin VI although the actin-activated ATPase activity was not affected by Ca(2+). Calmodulin was not dissociated from the heavy chain at high Ca(2+), suggesting that a conformational change of calmodulin upon Ca(2+) binding, but not its physical dissociation, determines the inhibition of the motility activity. The present results revealed the dual regulation of myosin VI by phosphorylation and Ca(2+) binding to calmodulin light chain.  相似文献   

8.
Apo-Calmodulin acts as the light chain for unconventional myosin V, and treatment with Ca(2+) can cause dissociation of calmodulin from the 6IQ region of the myosin heavy chain. The effects of Ca(2+) on the stoichiometry and affinity of interactions of calmodulin and its two domains with two myosin-V peptides (IQ3 and IQ4) have therefore been quantified in vitro, using fluorescence and near- and far-UV CD. The results with separate domains show their differential affinity in interactions with the IQ motif, with the apo-N domain interacting surprisingly weakly. Contrary to expectations, the effect of Ca(2+) on the interactions of either peptide with either isolated domain is to increase affinity, reducing the K(d) at physiological ionic strengths by >200-fold to approximately 75 nM for the N domain, and approximately 10-fold to approximately 15 nM for the C domain. Under suitable conditions, intact (holo- or apo-) calmodulin can bind up to two IQ-target sequences. Interactions of apo- and holo-calmodulin with the double-length, concatenated sequence (IQ34) can result in complex stoichiometries. Strikingly, holo-calmodulin forms a high-affinity 1:1 complex with IQ34 in a novel mode of interaction, as a "bridged" structure wherein two calmodulin domains interact with adjacent IQ motifs. This apparently imposes a steric requirement for the alpha-helical target sequence to be discontinuous, possibly in the central region, and a model structure is illustrated. Such a mode of interaction could account for the Ca(2+)-dependent regulation of myosin V in vitro motility, by changing the structure of the regulatory complex, and paradoxically causing calmodulin dissociation through a change in stoichiometry, rather than a Ca(2+)-dependent reduction in affinity.  相似文献   

9.
in vitro using these myosins and of localization studies using antiserum raised against each heavy chain, we suggested that both myosins are molecular motors for generating the motive force for cytoplasmic streaming in higher plant cells. The 170-kDa myosin is expressed not only in somatic cells but also in germinating pollen. In contrast, the 175-kDa myosin is distributed only in somatic cells. In the tip region of growing pollen tubes, it has been demonstrated that a tip-focused Ca2+ gradient is indispensable for growth and tube orientation. Cytoplasmic streaming in this region has been shown to be inactivated by high concentrations of Ca2+. The motile activity in vitro of 170-kDa myosin is suppressed by low (μM) levels of Ca2+ through its CaM light chain, suggesting that this suppression is one of the mechanisms for inactivating cytoplasmic streaming near the tip region of pollen tubes. The motile activity in vitro of 175-kDa myosin is also inhibited by Ca2+ at concentrations higher than 10−6M. It has been revealed that the elevation of cytosolic Ca2+ concentrations causes the cessation of cytoplasmic streaming even in somatic cells. Therefore, Ca2+-sensitivity of the motile activity of myosin appears to be a general molecular basis for Ca2+-induced cessation of cytoplasmic streaming. Received 6 September 2000/ Accepted in revised form 7 October 2000  相似文献   

10.
Calcineurin (CN) is a Ca(2+)/calmodulin (CaM)-dependent protein serine/threonine phosphatase that contains Zn(2+) in its catalytic domain and can be stimulated by divalent ions such as Mn(2+) and Ni(2+). In this study, the role of exogenous Zn(2+) in the regulation of CN activity and its relevance to the role of Ni(2+) was investigated. Zn(2+) at a concentration range of 10nM-10 micro M inhibited Ni(2+)-stimulated CN-activity in vitro in a dose-dependent manner and approximately 50% inhibition was attained with 0.25 micro M Zn(2+). Kinetic analysis showed that Zn(2+) inhibited the activity of CN by competing with Ni(2+). Interaction of CN and CaM was not inhibited with Zn(2+) at 10 micro M. Zn(2+) never affected the activity of cAMP phosphodiesterase 1 or myosin light-chain kinase (CaM-dependent enzymes) and rather activated alkaline phosphatase. The present results indicate that Zn(2+) should be a potent inhibitor for CN activity although this ion is essential for CN.  相似文献   

11.
Brush border myosin I from chicken intestine is phosphorylated in vitro by chicken intestinal epithelial cell protein kinase C. Phosphorylation on serine and threonine to a maximum of 0.93 mol of P/mol of myosin I occurs within an approximately 20 kDa region at the end of the COOH-terminal tail of the 119-kDa heavy chain. The effects of Ca2+ on myosin I phosphorylation by protein kinase C are complex, with up to 4-fold stimulation occurring at 0.5-3 microM Ca2+, and up to 80% inhibition occurring at 3-320 microM Ca2+. Phosphorylation required that brush border myosin I be in its phosphatidylserine vesicle-bound state. Previously unknown Ca2+ stimulation of brush border myosin I binding to phosphatidylserine vesicles was found to coincide with Ca2+ stimulation of phosphorylation. A myosin I proteolytic fragment lacking approximately 20 kDa of its tail retained Ca(2+)-stimulated binding, but showed reduced Ca(2+)-independent binding. Ca(2+)-dependent phosphatidylserine binding is apparently due to the concomitant phosphatidylserine-promoted, Ca(2+)-induced dissociation of up to three of the four calmodulin light chains from myosin I. Four highly basic putative calmodulin-binding sites in the Ca(2+)-dependent phosphatidylserine binding region of the heavy chain were identified based on the similarity in their sequence to the calmodulin- and phosphatidylserine-binding site of neuromodulin. Calmodulin dissociation is now shown to occur in the low micromolar Ca2+ concentration range and may regulate the association of brush border myosin I with membranes and its phosphorylation by protein kinase C.  相似文献   

12.
Rho-kinase--mediated contraction of isolated stress fibers   总被引:12,自引:0,他引:12       下载免费PDF全文
It is widely accepted that actin filaments and the conventional double-headed myosin interact to generate force for many types of nonmuscle cell motility, and that this interaction occurs when the myosin regulatory light chain (MLC) is phosphorylated by MLC kinase (MLCK) together with calmodulin and Ca(2+). However, recent studies indicate that Rho-kinase is also involved in regulating the smooth muscle and nonmuscle cell contractility. We have recently isolated reactivatable stress fibers from cultured cells and established them as a model system for actomyosin-based contraction in nonmuscle cells. Here, using isolated stress fibers, we show that Rho-kinase mediates MLC phosphorylation and their contraction in the absence of Ca(2+). More rapid and extensive stress fiber contraction was induced by MLCK than was by Rho-kinase. When the activity of Rho-kinase but not MLCK was inhibited, cells not only lost their stress fibers and focal adhesions but also appeared to lose cytoplasmic tension. Our study suggests that actomyosin-based nonmuscle contractility is regulated by two kinase systems: the Ca(2+)-dependent MLCK and the Rho-kinase systems. We propose that Ca(2+) is used to generate rapid contraction, whereas Rho-kinase plays a major role in maintaining sustained contraction in cells.  相似文献   

13.
The interaction of calmodulin with its target proteins is known to affect the kinetics and affinity of Ca(2+) binding to calmodulin. Based on thermodynamic principles, proteins that bind to Ca(2+)-calmodulin should increase the affinity of calmodulin for Ca(2+), while proteins that bind to apo-calmodulin should decrease its affinity for Ca(2+). We quantified the effects on Ca(2+)-calmodulin interaction of two neuronal calmodulin targets: RC3, which binds both Ca(2+)- and apo-calmodulin, and alphaCaM kinase II, which binds selectively to Ca(2+)-calmodulin. RC3 was found to decrease the affinity of calmodulin for Ca(2+), whereas CaM kinase II increases the calmodulin affinity for Ca(2+). Specifically, RC3 increases the rate of Ca(2+) dissociation from the C-terminal sites of calmodulin up to 60-fold while having little effect on the rate of Ca(2+) association. Conversely, CaM kinase II decreases the rates of dissociation of Ca(2+) from both lobes of calmodulin and autophosphorylation of CaM kinase II at Thr(286) induces a further decrease in the rates of Ca(2+) dissociation. RC3 dampens the effects of CaM kinase II on Ca(2+) dissociation by increasing the rate of dissociation from the C-terminal lobe of calmodulin when in the presence of CaM kinase II. This effect is not seen with phosphorylated CaM kinase II. The results are interpreted according to a kinetic scheme in which there are competing pathways for dissociation of the Ca(2+)-calmodulin target complex. This work indicates that the Ca(2+) binding properties of calmodulin are highly regulated and reveals a role for RC3 in accelerating the dissociation of Ca(2+)-calmodulin target complexes at the end of a Ca(2+) signal.  相似文献   

14.
Ca(2+)-dependent regulation of the motor activity of myosin V   总被引:2,自引:0,他引:2  
Mouse myosin V constructs were produced that consisted of the myosin motor domain plus either one IQ motif (M5IQ1), two IQ motifs (M5IQ2), a complete set of six IQ motifs (SHM5), or the complete IQ motifs plus the coiled-coil domain (thus permitting formation of a double-headed structure, DHM5) and expressed in Sf9 cells. The actin-activated ATPase activity of all constructs except M5IQ1 was inhibited above pCa 5, but this inhibition was completely reversed by addition of exogenous calmodulin. At the same Ca(2+) concentration, 2 mol of calmodulin from SHM5 and DHM5 or 1 mol of calmodulin from M5IQ2 were dissociated, suggesting that the inhibition of the ATPase activity is due to dissociation of calmodulin from the heavy chain. However, the motility activity of DHM5 and M5IQ2 was completely inhibited at pCa 6, where no dissociation of calmodulin was detected. Inhibition of the motility activity was not reversed by the addition of exogenous calmodulin. These results indicate that inhibition of the motility is due to conformational changes of calmodulin upon the Ca(2+) binding to the high affinity site but is not due to dissociation of calmodulin from the heavy chain.  相似文献   

15.
We succeeded in expressing the recombinant full-length myosin Va (M5Full) and studied its regulation mechanism. The actin-activated ATPase activity of M5Full was significantly activated by Ca(2+), whereas the truncated myosin Va without C-terminal globular domain is not regulated by Ca(2+) and constitutively active. Sedimentation analysis showed that the sedimentation coefficient of M5Full undergoes a Ca(2+)-induced conformational transition from 14S to 11S. Electron microscopy revealed that at low ionic strength, M5Full showed an extended conformation in high Ca(2+) while it formed a folded shape in the presence of EGTA, in which the tail domain was folded back towards the head-neck region. Furthermore, we found that the motor domain of myosin Va folds back to the neck domain in Ca(2+) while the head-neck domain is more extended in EGTA. It is thought that the association of the motor domain to the neck inhibits the binding of the tail to the neck thus destabilizing a folded conformation in Ca(2+). This conformational transition is closely correlated to the actin-activated ATPase activity. These results suggest that the tail and neck domain play a role in the Ca(2+) dependent regulation of myosin Va.  相似文献   

16.
Cytoplasmic streaming in characean algae is thought to be driven by interaction between stationary subcortical actin bundles and motile endoplasmic myosin. Implicit in this mechanism is a requirement for some form of coupling to transfer motive force from the moving myosin to the endoplasm. Three models of viscous coupling between myosin and endoplasm are presented here, and the hydrodynamic feasibility of each model is analyzed. The results show that individual myosinlike molecules moving along the actin bundles at reasonable velocities cannot exert enough viscous pull on the endoplasm to account for the observed streaming. Attachment of myosin to small spherical organelles improves viscous coupling to the endoplasm, but results for this model show that streaming can be generated only if the myosin-spheres move along the actin bundles in a virtual solid line at about twice the streaming velocity. In the third model, myosin is incorporated into a fibrous or membranous network or gel extending into the endoplasm. This network is pulled forward as the attached myosin slides along the actin bundles. Using network dimensions estimated from published micrographs of characean endoplasm, the results show that this system can easily generate the observed cytoplasmic streaming.  相似文献   

17.
To understand how the plasma membrane Ca(2+) pump (PMCA) behaves under changing Ca(2+) concentrations, it is necessary to obtain information about the Ca(2+) dependence of the rate constants for calmodulin activation (k(act)) and for inactivation by calmodulin removal (k(inact)). Here we studied these constants for isoforms 2b and 4b. We measured the ATPase activity of these isoforms expressed in Sf9 cells. For both PMCA4b and 2b, k(act) increased with Ca(2+) along a sigmoidal curve. At all Ca(2+) concentrations, 2b showed a faster reaction with calmodulin than 4b but a slower off rate. On the basis of the measured rate constants, we simulated mathematically the behavior of these pumps upon repetitive changes in Ca(2+) concentration and also tested these simulations experimentally; PMCA was activated by 500 nm Ca(2+) and then exposed to 50 nm Ca(2+) for 10 to 150 s, and then Ca(2+) was increased again to 500 nm. During the second exposure to 500 nm Ca(2+), the activity reached steady state faster than during the first exposure at 500 nm Ca(2+). This memory effect is longer for PMCA2b than for 4b. In a separate experiment, a calmodulin-binding peptide from myosin light chain kinase, which has no direct interaction with the pump, was added during the second exposure to 500 nm Ca(2+). The peptide inhibited the activity of PMCA2b when the exposure to 50 nm Ca(2+) was 150 s but had little or no effect when this exposure was only 15 s. This suggests that the memory effect is due to calmodulin remaining bound to the enzyme during the period at low Ca(2+). The memory effect observed in PMCA2b and 4b will allow cells expressing either of them to remove Ca(2+) more quickly in subsequent spikes after an initial activating spike.  相似文献   

18.
When opened by depolarization, L-type calcium channels are rapidly inactivated by the elevation of Ca(2+) concentration on the cytoplasmic side. Recent studies have shown that the interaction of calmodulin with the proximal part of the cytoplasmic C-terminal tail of the channel plays a prominent role in this modulation. Two motifs interacting with calmodulin in a Ca(2+)-dependent manner have been described: the IQ sequence and more recently the neighboring CB sequence. Here, using synthetic peptides and fusion proteins derived from the Ca(v)1.2 channel combined with biochemical techniques, we show that these two peptides are the only motifs of the cytoplasmic tail susceptible to interact with calmodulin. We determined the K(d) of the CB interaction with calmodulin to be 12 nm, i.e. below the K(d) of IQ-calmodulin, thereby precluding a competitive displacement of CB by IQ in the presence of Ca(2+). In place, we demonstrated that a ternary complex is formed at high Ca(2+) concentration, provided that calmodulin and the peptides are initially allowed to interact at a low Ca(2+) concentration. These results provide evidence that CB and IQ motifs interacting together with calmodulin constitute a minimal molecular switch leading to Ca(2+)-induced inactivation. In addition, we suggest that they could also be the tethering site of calmodulin.  相似文献   

19.
The actin-activated Mg(2+)-ATPase activity of Acanthamoeba myosins I depends on phosphorylation of their single heavy chains by myosin I heavy chain kinase. Kinase activity is enhanced > 50-fold by autophosphorylation at multiple sites. The rate of kinase autophosphorylation is increased approximately 20-fold by acidic phospholipids independent of the presence of Ca2+ and diglycerides. We show in this paper that Ca(2+)-calmodulin inhibits phospholipid-stimulated autophosphorylation of myosin I heavy chain kinase and hence also inhibits the catalytic activity of unphosphorylated kinase in the presence of phospholipid. Ca(2+)-calmodulin does not inhibit kinase activity in the absence of phospholipid. Micromolar Ca(2+)-calmodulin also inhibits binding of myosin I heavy chain kinase to phospholipid vesicles and purified plasma membranes. Proteolytic removal of a 7-kDa NH2-terminal segment from the 97-kDa kinase prevents binding of both calmodulin and phospholipid; therefore, we propose that they bind to the same or overlapping sites. These data provide a mechanism by which Ca2+ could inhibit the actin-activated Mg(2+)-ATPase activity of the myosin I isozymes in vivo and thus regulate myosin I-dependent motile activities.  相似文献   

20.
An action potential in characean cells is accompanied by an increase in the cytosolic Ca(2+) concentration ([Ca(2+)](c)) which subsequently causes cessation of cytoplasmic streaming. Two Ca(2+ )origins are postulated for the increase in [Ca(2+)](c), extracellular and intracellular ones. For the extracellular origin, a Ca(2+) influx through voltage-dependent Ca(2+)-permeable channels is postulated. For the intracellular origin, a chain of reactions is assumed to occur, involving phosphoinositide-specific phospholipase C (PI-PLC) activation, production of inositol 1,4,5-trisphosphate (IP(3)) and IP(3)-dependent Ca(2+) release from internal stores [Biskup et al. (1999) FEBS Lett. 453: 72]. The hypothesis of the intracellular Ca(2+) origin was tested in three ways: injection of IP(3) into the streaming endoplasm, application of inhibitors of PI-PLC (U73122 and neomycin) and application of an inhibitor of IP(3)-receptor (2-aminoethoxydiphenyl borate; 2APB). Injection of 1 mM IP(3) into Chara cells did not change the rate of cytoplasmic streaming. Both U73122 (20 micro M) and neomycin (200 micro M) did not affect the generation of the action potential, cessation of cytoplasmic streaming and the increase in [Ca(2+)](c) caused by electric stimulus even 20-30 min after application. 2APB depolarized the membrane and inhibited the excitability of the plasma membrane. The results are not consistent with the data obtained by Biskup et al. (1999) who found inhibition of the excitatory inward current by neomycin and U73122. The hypotheses of internal and external Ca(2+) origins are discussed in the light of the present results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号