首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inter-retrotransposon amplified polymorphism (IRAP) and retrotransposon-microsatellite amplified polymorphism (REMAP) techniques were successfully applied, for the first time, to analyze genetic diversity among 92 ginger landraces collected from north-western Himalayan region of India. Six IRAP primer/combinations generated 75 loci with an average of 12 loci/primer displaying an overall polymorphism of 95.95 %. On the other hand, twenty five REMAP primer combinations produced 414 loci with 96.5 % polymorphism. IRAP showed maximum Rp (5.39) and PIC (0.28) values, while the same in REMAP was observed to be 10.92 and 0.34. Cluster analysis using Jaccard’s similarity coefficient for IRAP and REMAP data ranged between 0.21 to 1.0 and 0.21 to 0.85, respectively distinguishing all the genotypes with diverse genetic makup. The results also confirmed the presence of sukkula retrotransposon (RT6) in the ginger genome which effectively acted as genetic marker revealing high regional genetic diversity in the ginger gene pool. The study will help in giving insight to the genetic constitution of vegetatively grown ginger crop and for its further utilization in improvement, conservation and management programmes.  相似文献   

2.
Inter-retrotransposon amplified polymorphisms (IRAPs) and retrotransposon-microsatellite amplified polymorphisms (REMAPs) were used to detect retrotransposon integration events and genetic diversity in 101 Iranian bread wheat (Triticum aestivum L.) cultivars and breeding lines. The 9 IRAP primers amplified 128 loci, and 20 REMAP primers amplified 263 loci. Percentage of polymorphic loci, average expected heterozygosity, number of effective alleles, and Shannon’s information index for the REMAP markers were slightly higher than those for the IRAP markers. The same estimated parameters calculated for native and nonnative retrotransposons were not considerably different. A Mantel test between IRAP and REMAP cophenetic matrices evidenced no significant correlation. Cluster analysis based on the Dice similarity coefficient and complete linkage algorithm using IRAP+REMAP loci identified five groups among the genotypes studied that could be applied as crossing parents in T. aestivum breeding programs.  相似文献   

3.
Retrotransposons are ubiquitous components of plants genomes, making them useful molecular markers for genetic diversity studies. We used inter-retrotransposon amplified polymorphism (IRAP) and retrotransposon-microsatellite amplified polymorphism (REMAP) markers to assess genetic diversity and survey activity of LTR retrotransposon elements in 106 sunflower (Helianthus annuus L.) genotypes from different research centers. We found 118 (out of 128) and 113 (out of 120) polymorphic loci using 14 IRAP and 14 REMAP primers, respectively. The Mantel test between IRAP and REMAP cophenetic matrices revealed low correlation (r = 0.55) between them. Dice similarities based on combined (IRAP + REMAP) data ranged from 0.34 to 0.93 among (“11 × 12” and “F1250/03”) and (“HA335B” and “TMB51”) genotypes, respectively. Classification of genotypes using the Dice similarity matrix derived from IRAP+REMAP data based on the un-weighted pair-group method using the arithmetic average algorithm resulted in nine distinct groups. The studied genotypes were divided into seven groups considering their origins (research centers). Classification of genotypes can be useful to assess the genetic variation and gene flow between and within research centers. Analysis of molecular variance based on IRAP+REMAP data revealed a higher level of genetic variation within (94%) than between (6%) research centers. A high amount of gene flow was detected among USDA, ASGROW, and ENSAT groups. Because environmental factors have no influence on molecular markers, the construction of heterotic groups based on retrotransposon markers will be useful for the selecting of parents with a high probability of producing superior hybrids.  相似文献   

4.
Retrotransposons play an important role in plant genetic instability and genome evolution. Retrotransposon-based molecular markers are valuable tools to reveal the behavior of retrotransposons in their host genome. In this study, suppression polymerase chain reaction was used, for the first time, to develop retrotransposon long terminal repeat (LTR) and polypurine tract (PPT) primers in Japanese persimmon (Diospyros kaki Thunb.), which were then employed for germplasm identification by means of interretrotransposon-amplified polymorphism (IRAP), sequence-specific amplified polymorphism (SSAP) and retrotransposon-microsatellite-amplified polymorphism (REMAP) molecular markers. The results showed that 16 out of 26 primers produced expected amplifications and abundant polymorphisms by IRAP in 28 genotypes of Diospyros. Moreover, some of these primers were further successfully used in REMAP and SSAP analysis. Each type of molecular markers produced unique fingerprint in 28 genotypes analyzed. Among the primers/primer combinations, two IRAP primers and four SSAP primer combinations could discriminate all of the germplasm solely. Further comparative analysis indicated that IRAP was the most sensitive marker system for detecting variability. High level of retrotransposon insertion polymorphisms between bud sports were detected by IRAP and SSAP, and the primers/primer combinations with powerful discrimination capacity for two pairs of bud sports lines were further obtained. Additionally, possible genetic relationships between several Japanese persimmon were discussed. To our knowledge, this is the first report on the development of retrotransposon LTR and PPT primers in Diospyros, and the retrotransposon primers developed herein might open new avenue for research in the future.  相似文献   

5.
The stability of aging barley calli was investigated with the barley retroelement 1 (BARE-1) retrotransposon specific inter-retrotransposon amplified polymorphism (IRAP) technique. Mature embryos of barley (Hordeum vulgare cv. Zafer-160) were cultured on callus induction MS medium supplemented with 3 mg/L 2,4-D and maintained on the same medium for 60 days. Ten IRAP primers were used in 25 different combinations. The similarity index between 30-day-old and 45-day-old calli was 84%; however, the similarity index between mature embryos and 45-day-old calli was 75%. These culture conditions caused BARE-1 retrotransposon alterations to appear as different band profiles. This is the first report of the use of the IRAP technique in barley in an investigation of callus development.  相似文献   

6.
7.
8.
IRAP and REMAP for retrotransposon-based genotyping and fingerprinting   总被引:1,自引:0,他引:1  
Retrotransposons can be used as markers because their integration creates new joints between genomic DNA and their conserved ends. To detect polymorphisms for retrotransposon insertion, marker systems generally rely on PCR amplification between these ends and some component of flanking genomic DNA. We have developed two methods, retrotransposon-microsatellite amplified polymorphism (REMAP) analysis and inter-retrotransposon amplified polymorphism (IRAP) analysis, that require neither restriction enzyme digestion nor ligation to generate the marker bands. The IRAP products are generated from two nearby retrotransposons using outward-facing primers. In REMAP, amplification between retrotransposons proximal to simple sequence repeats (microsatellites) produces the marker bands. Here, we describe protocols for the IRAP and REMAP techniques, including methods for PCR amplification with a single primer or with two primers and for agarose gel electrophoresis of the product using optimal electrophoresis buffers and conditions. This protocol can be completed in 1-2 d.  相似文献   

9.
The environment can have a decisive influence on the structure of the genome, changing it in a certain direction. Therefore, the genomic distribution of environmentally sensitive transposable elements may vary measurably across a species area. In the present research, we aimed to detect and evaluate the level of LTR retrotransposon intraspecific variability in Aegilops speltoides (2n = 2x = 14), a wild cross-pollinated relative of cultivated wheat. The interretrotransposon amplified polymorphism (IRAP) protocol was applied to detect and evaluate the level of retrotransposon intraspecific variability in Ae. speltoides and closely related species. IRAP analysis revealed significant diversity in TE distribution. Various genotypes from the 13 explored populations significantly differ with respect to the patterns of the four explored LTR retrotransposons (WIS2, Wilma, Daniela, and Fatima). This diversity points to a constant ongoing process of LTR retrotransposon fraction restructuring in populations of Ae. speltoides throughout the species' range and within single populations in time. Maximum changes were recorded in genotypes from small stressed populations. Principal component analysis showed that the dynamics of the Fatima element significantly differ from those of WIS2, Wilma, and Daniela. In terms of relationships between Sitopsis species, IRAP analysis revealed a grouping with Ae. sharonensis and Ae. longissima forming a separate unit, Ae. speltoides appearing as a dispersed group, and Ae. bicornis being in an intermediate position. IRAP display data revealed dynamic changes in LTR retrotransposon fractions in the genome of Ae. speltoides. The process is permanent and population specific, ultimately leading to the separation of small stressed populations from the main group.  相似文献   

10.
Two DNA fingerprinting techniques, random amplified polymorphic DNA (RAPD) and inter-retrotransposon amplified polymorphism (IRAP), were used to characterize somaclonal variants of banana. IRAP primers were designed on the basis of repetitive and genome-wide dispersed long terminal repeat (LTR) retrotransposon families for assessing the somaclonal variation in 2Musa clones resistant and susceptible toFusarium oxysporum f. sp.cubense race 4. RAPD markers successfully detected genetic variation within and between individuals of the clones. IRAP makers amplified either by a single primer or a combination of primers based on LTR orientation successfully amplified different retrotransposons dispersed in theMusa genome and detected new events of insertions. RAPD markers proved more polymorphic than IRAP markers. Somaclonal variation seems to be the result of numerous indels occurring genome-wide accompanied by the activation of retroelements, as a result of stress caused by micropropagation. It is concluded that characterization of the somaclonal variants requires more than one DNA marker system to detect variation in diverse components of the genome.  相似文献   

11.
Spartina x townsendii arose during the end of the 19th century in England by hybridization between the indigenous Spartina maritima and the introduced Spartina alterniflora, native to the eastern seaboard of North America. Duplication of the hybrid genome gave rise to Spartina anglica, a vigorous allopolyploid involved in natural and artificial invasions on several continents. This system allows investigation of the early evolutionary changes that accompany stabilization of new allopolyploid species. Because allopolyploidy may be a genomic shock, eliciting retroelement insertional activity, we examined whether retrotransposons present in the parental species have been activated in the genome of S. anglica. For this purpose we used inter-retrotransposon amplified polymorphism (IRAP) and retrotransposons-microsatellite amplified polymorphism (REMAP) markers, which are multilocus PCR-based methods detecting retrotransposon integration events in the genome. IRAP and REMAP allowed the screening of insertional polymorphisms in populations of S. anglica. The populations are composed mainly of one major multilocus genotype, identical to the first-generation hybrid S. x townsendii. Few new integration sites were encountered in the young allopolyploid genome. We also found strict additivity of the parental subgenomes in the allopolyploid. Both these findings indicate that the genome of S. anglica has not undergone extensive changes since its formation. This contrasts with previous results from the literature, which report rapid structural changes in experimentally resynthesized allopolyploids.  相似文献   

12.
Insertional polymorphisms of two copia-like (Vine-1, Tvv1) and one gypsy-like (Gret1) retrotransposon found in the grapevine genome were studied in 29 Vitis genotypes (Vitis arizonica, Vitis cinerea, Vitis labrusca, Vitis rupestis, Vitis rotundifolia, Vitis vinifera subsp. sylvestris and 23 V. vinifera subsp. sativa) using inter-retrotransposon amplified polymorphism (IRAP), retrotransposon-microsatellite amplified polymorphism (REMAP) and sequence-specific amplified polymorphism (SSAP) techniques. IRAP, REMAP and SSAP polymorphisms were compared with amplified fragment length polymorphism (AFLP), Inter-single sequence repeats (ISSR) and SSR polymorphisms by evaluating the information content, the number of loci simultaneously analysed per experiment, the effectiveness of the analyses in assessing the relationship between accessions and the number of loci needed to obtain a coefficient of variation of 10%. The UPGMA dendrograms of each molecular marker system were compared and the Mantel matrix correspondence test was applied. Furthermore, the corresponding insertion ages of the transposable elements were estimated for each retrotransposon subfamily analysed. The presence of Gret1, Tvv1 and Vine-1 retrotransposons in all analysed genotypes suggests that copia-like and gypsy-like retrotransposons are widespread in Vitis genus. The results indicate that these retrotransposons were active before Vitis speciation and contributed to Vitis genus evolution. IRAP, REMAP and SSAP markers allow the discrimination of Vitis species and V. vinifera subsp. sativa cultivars with certainty as has been shown with AFLP, ISSR and SSR analyses, but phylogenetic trees obtained by retrotransposon-based molecular markers polymorphisms show some significant differences in the allocation of the analysed accessions compare to those obtained by ISSR, AFLP and SSR molecular markers. The phylogenetic tree resulting from REMAP polymorphism appeared the most representative of the effective relationship between all analysed accessions.  相似文献   

13.
Retrotransposon markers have been demonstrated to be powerful tools for investigating linkage, evolution and genetics diversity in plants. In the present study, we identified and cloned three full-size TRIM (terminal-repeat retrotransposon in miniature) group retrotransposon elements from apple (Malus domestica) cv. ‘Antonovka’, the first from the Rosaceae. To investigate their utility as markers, we designed primers to match the long terminal repeats (LTRs) of the apple TRIM sequences. We found that PCR reactions with even a single primer produced multiple bands, suggesting that the copy number of these TRIM elements is relatively high, and that they may be locally clustered or nested in the genome. Furthermore, the apple TRIM primers employed in IRAP (inter-retrotransposon amplified polymorphism) or REMAP (retrotransposon-microsatellite amplified polymorphism) analyses produced unique, reproducible profiles for 12 standard apple cultivars. On the other hand, all seven of the sport mutations in this study were identical to their mother cultivar. Genetic similarity values calculated from the IRAP/REMAP analyses or the STMS (sequence tagged microsatellite sites) analysis were generally comparable. PAUP cluster analysis based on IRAP and REMAP markers in apple and Japanese quince generated an NJ tree that is in good accordance with both a tree based on SMTS markers and the origin of the studied samples. Our results demonstrate that, although they do not encode the proteins necessary to carry out a life cycle and are thereby non-autonomous, TRIMs are at least as polymorphic in their insertion patterns as conventional complete retrotransposons. Kristiina Antonius-Klemola, Ruslan Kalendar are the first two authors contributed equally to this work  相似文献   

14.
Four molecular markers, including inter-retrotransposon amplified polymorphism (IRAP), retrotransposon-microsatellite amplified polymorphism (REMAP), sequence-specific amplified polymorphism (SSAP), and amplified fragment length polymorphism (AFLP), were compared in terms of their informativeness and efficiency for analysis of genetic relationships among 28 genotypes in the genus Diospyros. The results were as follows: (1) the highest level of detected polymorphism were observed for IRAP; (2) AFLP was the most efficient marker system due to the simultaneous detection of abundant polymorphism markers per single reaction; (3) the marker index (MI) value was lower for SSAP than for AFLP, but SSAP had a higher level of detected polymorphism than AFLP; (4) the correlation coefficients of similarity were statistically significant for all four marker systems; (5) the four molecular markers yielded similar phylogenetic trees. To our knowledge, this was the first detailed report of a comparison of performance among three retrotransposon-based molecular markers (IRAP, REMAP, SSAP) and the AFLP technique (DNA-based molecular marker) on a set of samples of Diospyros. The results provide guidance for future efficient use of these molecular methods in the genetic analysis of Diospyros.  相似文献   

15.
The Sequence-Specific Amplification Polymorphism (S-SAP) method, and the related molecular marker techniques IRAP (inter-retrotransposon amplified polymorphism) and REMAP (retrotransposon-microsatellite amplified polymorphism), are based on retrotransposon activity, and are increasingly widely used. However, there have been no systematic analyses of the parameters of these methods or of the utility of different retrotransposon families in producing polymorphic, scorable fingerprints. We have generated S-SAP, IRAP, and REMAP data for three barley (Hordeum vulgare L.) varieties using primers based on sequences from six retrotransposon families (BARE-1, BAGY-1, BAGY-2, Sabrina, Nikita and Sukkula). The effect of the number of selective bases on the S-SAP profiles has been examined and the profiles obtained with eight MseI+3 selective primers compared for all the elements. Polymorphisms detected in the insertion pattern of all the families show that each can be used for S-SAP. The uniqueness of each transposition event and differences in the historic activity of each family suggest that the use of multiple retrotransposon families for genetic analysis will find applications in mapping, fingerprinting, and marker-assisted selection and evolutionary studies, not only in barley and other Hordeum species and related taxa, but also more generally.  相似文献   

16.
In an attempt to remove lethal and deleterious genes and enhance the heterozygosity of the potato genome, we developed several diverse somatic hybrids through the electrofusion of selected monoploids. Somatic hybrids and somaclones resulting from fused and unfused protoplasts, respectively, were verified with microsatellites. Molecular markers anchored in the Tst1 retrotransposon were used to examine polymorphisms in the regenerated plants and to reveal any somaclonal variation. Inter-retrotransposon amplified polymorphism (IRAP) and retrotransposon display (sequence-specific amplified polymorphism (S-SAP), anchored in a retransposon) were examined on an ALFexpress DNA sequencer. Because of inconsistencies in the number and quality of bands revealed by the combination of either class of marker in combination with the ALFexpress, we cloned and sequenced 11 S-SAP bands to use as restriction fragment length polymorphism (RFLP) probes in Southern blot analyses of genetic relationships in our potato populations and among related Solanaceae. Readily scorable bands (n = 27) that separated somatic hybrids from parental monoploids and somaclones and grouped monoploids according to known genetic relationships were produced. Some of the probes could be used to differentiate tomato and Datura from potato. Sequence analysis of 5 cloned IRAP and 11 cloned S-SAP markers confirmed that they were anchored in the Tst1 retrotransposon. BLAST searches within GenBank produced 10 highly significant hits (5 nucleotide, 4 expressed sequence tag (EST), and 1 protein) within closely related Solanaceae, suggesting that Tst1 represents an old retroelement that was inserted before the diversion of genera within Solanaceae; however, most sequences were undescribed.  相似文献   

17.
Retrotransposon segments were characterized and inter-retrotransposon amplified polymorphism (IRAP) markers developed for cultivated flax (Linum usitatissimum L.) and the Linum genus. Over 75 distinct long terminal repeat retrotransposon segments were cloned, the first set for Linum, and specific primers designed for them. IRAP was then used to evaluate genetic diversity among 708 accessions of cultivated flax comprising 143 landraces, 387 varieties, and 178 breeding lines. These included both traditional and modern, oil (86), fiber (351), and combined-use (271) accessions, originating from 36 countries, and 10 wild Linum species. The set of 10 most polymorphic primers yielded 141 reproducible informative data points per accession, with 52% polymorphism and a 0.34 Shannon diversity index. The maximal genetic diversity was detected among wild Linum species (100% IRAP polymorphism and 0.57 Jaccard similarity), while diversity within cultivated germplasm decreased from landraces (58%, 0.63) to breeding lines (48%, 0.85) and cultivars (50%, 0.81). Application of Bayesian methods for clustering resulted in the robust identification of 20 clusters of accessions, which were unstratified according to origin or user type. This indicates an overlap in genetic diversity despite disruptive selection for fiber versus oil types. Nevertheless, eight clusters contained high proportions (70?C100%) of commercial cultivars, whereas two clusters were rich (60%) in landraces. These findings provide a basis for better flax germplasm management, core collection establishment, and exploration of diversity in breeding, as well as for exploration of the role of retrotransposons in flax genome dynamics.  相似文献   

18.
19.
The inter-retrotransposon amplified polymorphism (IRAP) protocol was applied for the first time within the genus Helianthus to assess intraspecific variability based on retrotransposon sequences among 36 wild accessions and 26 cultivars of Helianthus annuus L., and interspecific variability among 39 species of Helianthus. Two groups of LTRs, one belonging to a Copia-like retroelement and the other to a putative retrotransposon of unknown nature (SURE) have been isolated, sequenced and primers were designed to obtain IRAP fingerprints. The number of polymorphic bands in H. annuus wild accessions is as high as in Helianthus species. If we assume that a polymorphic band can be related to a retrotransposon insertion, this result suggests that retrotransposon activity continued after Helianthus speciation. Calculation of similarity indices from binary matrices (Shannon’s and Jaccard’s indices) show that variability is reduced among domesticated H. annuus. On the contrary, similarity indices among Helianthus species were as large as those observed among wild H. annuus accessions, probably related to their scattered geographic distribution. Principal component analysis of IRAP fingerprints allows the distinction between perennial and annual Helianthus species especially when the SURE element is concerned.  相似文献   

20.
野生稻基因组随机扩增多态性DNA(RAPD)分析   总被引:10,自引:0,他引:10  
用18个随机引物对2份栽培稻、12份包含有六个基因组型的野生稻DNA进行了扩增,共获得147个多态性DNA片断,把这些多态性DNA片断作为遗传位点用UPGMA法计算出各材料间的遗传相似性系数,并作了聚类分析.主要结果如下:1普通野生稻同栽培稻的亲缘关系很近,其中江永普通野生稻更接近于粳稻.2.CCDD组的Oryzalatifolia和EE组的O.australiensis遗传多态性相似。3.B、C、D、E组的遗传多态性相似,组成一个复合体,此复合体与A组的遗传多态性也相似,而F组则相距较远.4.O.mcyeriana和Rhynchofyzasabulata尚未确定组型,RAPD测定结果表明,前者与其它组型的种亲缘关系较远,后者则与AC复合体的种较近.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号