首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tn5397 is a conjugative transposon that was originally isolated from Clostridium difficile. Previous analysis had shown that the central region of Tn5397 was closely related to the conjugative transposon Tn916. However, in this work we obtained the DNA sequence of the ends of Tn5397 and showed that they are completely different to those of Tn916. Tn5397 did not contain the int and xis genes, which are required for the excision and integration of Tn916. Instead, the right end of Tn5397 contained a gene, tndX, that appears to encode a member of the large resolvase family of site-specific recombinases. TndX is closely related to the TnpX resolvase from the mobilizable but nonconjugative chloramphenicol resistance transposons, Tn4451 from Clostridium perfringens and Tn4453 from C. difficile. Like the latter elements, inserted copies of Tn5397 were flanked by a direct repeat of a GA dinucleotide. The Tn5397 target sites were also shown to contain a central GA dinucleotide. Excision of the element in C. difficile completely regenerated the original target sequence. A circular form of the transposon, in which the left and right ends of the element were separated by a GA dinucleotide, was detected by PCR in both Bacillus subtilis and C. difficile. A Tn5397 mutant in which part of tndX was deleted was constructed in B. subtilis. This mutant was nonconjugative and did not produce the circular form of Tn5397, indicating that the TndX resolvase has an essential role in the excision and transposition of Tn5397 and is thus the first example of a member of the large resolvase family of recombinases being involved in conjugative transposon mobility. Finally, we showed that introduction of Tn916 into a strain containing Tn5397 induced the loss of the latter element in 95.6% of recipients.  相似文献   

2.
Clostridium perfringens causes fatal human infections, such as gas gangrene, as well as gastrointestinal diseases in both humans and animals. Detailed molecular analysis of the tetracycline resistance plasmid pCW3 from C. perfringens has shown that it represents the prototype of a unique family of conjugative antibiotic resistance and virulence plasmids. We have identified the pCW3 replication region by deletion and transposon mutagenesis and showed that the essential rep gene encoded a basic protein with no similarity to any known plasmid replication proteins. An 11-gene conjugation locus containing 5 genes that encoded putative proteins with similarity to proteins from the conjugative transposon Tn916 was identified, although the genes' genetic arrangements were different. Functional genetic studies demonstrated that two of the genes in this transfer clostridial plasmid (tcp) locus, tcpF and tcpH, were essential for the conjugative transfer of pCW3, and comparative analysis confirmed that the tcp locus was not confined to pCW3. The conjugation region was present on all known conjugative plasmids from C. perfringens, including an enterotoxin plasmid and other toxin plasmids. These results have significant implications for plasmid evolution, as they provide evidence that a nonreplicating Tn916-like element can evolve to become the conjugation locus of replicating plasmids that carry major virulence genes or antibiotic resistance determinants.  相似文献   

3.
4.
The insertion sites of the conjugative transposon Tn916 in the anaerobic pathogen Clostridium difficile were determined using Illumina Solexa high-throughput DNA sequencing of Tn916 insertion libraries in two different clinical isolates: 630ΔE, an erythromycin-sensitive derivative of 630 (ribotype 012), and the ribotype 027 isolate R20291, which was responsible for a severe outbreak of C. difficile disease. A consensus 15-bp Tn916 insertion sequence was identified which was similar in both strains, although an extended consensus sequence was observed in R20291. A search of the C. difficile 630 genome showed that the Tn916 insertion motif was present 100,987 times, with approximately 63,000 of these motifs located in genes and 35,000 in intergenic regions. To test the usefulness of Tn916 as a mutagen, a functional screen allowed the isolation of a mutant. This mutant contained Tn916 inserted into a gene involved in flagellar biosynthesis.  相似文献   

5.
6.
Viridans streptococci, which include Streptococcus gordonii, are pioneer oral bacteria that initiate dental plaque formation. Sessile bacteria in a biofilm exhibit a mode of growth that is distinct from that of planktonic bacteria. Biofilm formation of S. gordonii Challis was characterized using an in vitro biofilm formation assay on polystyrene surfaces. The same assay was used as a nonbiased method to screen isogenic mutants generated by Tn916 transposon mutagenesis for defective biofilm formation. Biofilms formed optimally when bacteria were grown in a minimal medium under anaerobic conditions. Biofilm formation was affected by changes in pH, osmolarity, and carbohydrate content of the growth media. Eighteen biofilm-defective mutants of S. gordonii Challis were identified based on Southern hybridization with a Tn916-based probe and DNA sequences of the Tn916-flanking regions. Molecular analyses of these mutants showed that some of the genes required for biofilm formation are involved in signal transduction, peptidoglycan biosynthesis, and adhesion. These characteristics are associated with quorum sensing, osmoadaptation, and adhesion functions in oral streptococci. Only nine of the biofilm-defective mutants had defects in genes of known function, suggesting that novel aspects of bacterial physiology may play a part in biofilm formation. Further identification and characterization of biofilm-associated genes will provide insight into the molecular mechanisms of biofilm formation of oral streptococci.  相似文献   

7.
In Saccharomyces cerevisiae, zinc cluster protein Pdr1 can form homodimers as well as heterodimers with Pdr3 and Stb5, suggesting that different combinations of these proteins may regulate the expression of different genes. To gain insight into the interplay among these regulators, we performed genome-wide location analysis (chromatin immunoprecipitation with hybridization to DNA microarrays) and gene expression profiling. Unexpectedly, we observed that Stb5 shares only a few target genes with Pdr1 or Pdr3 in rich medium. Interestingly, upon oxidative stress, Stb5 binds and regulates the expression of most genes of the pentose phosphate pathway as well as of genes involved in the production of NADPH, a metabolite required for oxidative stress resistance. Importantly, deletion of STB5 results in sensitivity to diamide and hydrogen peroxide. Our data suggest that Stb5 acts both as an activator and as a repressor in the presence of oxidative stress. Furthermore, we show that Stb5 activation is not mediated by known regulators of the oxidative stress response. Integrity of the pentose phosphate pathway is required for the activation of Stb5 target genes but is not necessary for the increased DNA binding of Stb5 in the presence of diamide. These data suggest that Stb5 is a key player in the control of NADPH production for resistance to oxidative stress.  相似文献   

8.
9.
10.
Bacillus subtilis cells respond almost immediately to different stress conditions by increasing the production of general stress proteins (GSPs). The genes encoding the majority of the GSPs that are induced by heat, ethanol, salt stress or by starvation for glucose, oxygen or phosphate belong to the σB-dependent general stress regulon. Despite a good understanding of the complex regulation of the activity of σB and knowledge of a very large number of general stress genes controlled by σB, first insights into the physiological role of this non-specific stress response have been obtained only very recently. To explore the physiological role of this regulon, we and others identified σB-dependent general stress genes and compared the stress tolerance of wild-type cells with mutants lacking σB or general stress proteins. The proteins encoded by σB-dependent general stress genes can be divided into at least five functional groups that most probably provide growth-restricted B. subtilis cells with a multiple stress resistance in anticipation of future stress. In particular, sigB mutants are impaired in non-specific resistance to oxidative stress, which requires the σB-dependent dps gene encoding a DNA-protecting protein. Protection against oxidative damage of membranes, proteins or DNA could be the most essential component of σB-mediated general stress resistance in growth-arrested aerobic Gram-positive bacteria. Other general stress genes have both a σB-dependent induction pathway and a second σB-independent mechanism of stress induction, thereby partially compensating for a σB deficiency in a sigB mutant. In contrast to sigB mutants, null mutations in genes encoding those proteins, such as clpP or clpC, cause extreme sensitivity to salt or heat.  相似文献   

11.
Francisella tularensis is a gram-negative facultative intracellular pathogen and the causative agent of tularemia. Recently, genome-wide screens have identified Francisella genes required for virulence in mice. However, the mechanisms by which most of the corresponding proteins contribute to pathogenesis are still largely unknown. To further elucidate the roles of these virulence determinants in Francisella pathogenesis, we tested whether each gene was required for replication of the model pathogen F. novicida within macrophages, an important virulence trait. Fifty-three of the 224 genes tested were involved in intracellular replication, including many of those within the Francisella pathogenicity island (FPI), validating our results. Interestingly, over one third of the genes identified are annotated as hypothetical, indicating that F. novicida likely utilizes novel virulence factors for intracellular replication. To further characterize these virulence determinants, we selected two hypothetical genes to study in more detail. As predicted by our screen, deletion mutants of FTN_0096 and FTN_1133 were attenuated for replication in macrophages. The mutants displayed differing levels of attenuation in vivo, with the FTN_1133 mutant being the most attenuated. FTN_1133 has sequence similarity to the organic hydroperoxide resistance protein Ohr, an enzyme involved in the bacterial response to oxidative stress. We show that FTN_1133 is required for F. novicida resistance to, and degradation of, organic hydroperoxides as well as resistance to the action of the NADPH oxidase both in macrophages and mice. Furthermore, we demonstrate that F. holarctica LVS, a strain derived from a highly virulent human pathogenic species of Francisella, also requires this protein for organic hydroperoxide resistance as well as replication in macrophages and mice. This study expands our knowledge of Francisella's largely uncharacterized intracellular lifecycle and demonstrates that FTN_1133 is an important novel mediator of oxidative stress resistance.  相似文献   

12.
Previously, we isolated a selenate- and arsenate-reducing bacterium, designated strain SF-1, from selenium-contaminated sediment and identified it as a novel species, Bacillus selenatarsenatis. B. selenatarsenatis strain SF-1 independently reduces selenate to selenite, arsenate to arsenite, and nitrate to nitrite by anaerobic respiration. To identify the genes involved in selenate reduction, 17 selenate reduction-defective mutant strains were isolated from a mutant library generated by random insertion of transposon Tn916. Tn916 was inserted into the same genome position in eight mutants, and the representative strain SF-1AM4 did not reduce selenate but did reduce nitrate and arsenate to the same extent as the wild-type strain. The disrupted gene was located in an operon composed of three genes designated srdBCA, which were predicted to encode a putative oxidoreductase complex by the BLASTX program. The plasmid vector pGEMsrdBCA, containing the srdBCA operon with its own promoter, conferred the phenotype of selenate reduction in Escherichia coli DH5α, although E. coli strains containing plasmids lacking any one or two of the open reading frames from srdBCA did not exhibit the selenate-reducing phenotype. Domain structure analysis of the deduced amino acid sequence revealed that SrdBCA had typical features of membrane-bound and molybdopterin-containing oxidoreductases. It was therefore proposed that the srdBCA operon encoded a respiratory selenate reductase complex. This is the first report of genes encoding selenate reductase in gram-positive bacteria.  相似文献   

13.
In Clostridium perfringens, conjugative plasmids encode important virulence factors, such as toxins and resistance determinants. All of these plasmids carry a conjugation locus that consists of 11 genes: intP and tcpA to tcpJ. Three proteins, TcpA, a potential coupling protein, TcpF, a putative ATPase that is similar to ORF15 from Tn916, and TcpH, which contains VirB6-like domains, are essential for conjugation in the prototype conjugative plasmid pCW3. To analyze the functional domains of TcpH, a putative structural component of the mating-pair formation complex and deletion and site-directed mutants were constructed and analyzed. The results showed that the N-terminal 581 residues and the conserved (242)VQQPW(246) motif were required for conjugative transfer. Bacterial two-hybrid and biochemical studies showed that TcpH interacted with itself and with TcpC. An analysis of the tcpH mutants demonstrated that the region required for these interactions also was localized to the N-terminal 581 residues and that the function of the C-terminal region of TcpH was independent of protein-protein interactions. Finally, immunofluorescence studies showed that TcpH and TcpF were located at both cell poles of donor C. perfringens cells. The results provide evidence that TcpH is located in the cell membrane, where it oligomerizes and interacts with TcpC to form part of the mating-pair formation complex, which is located at the cell poles and is closely associated with TcpF.  相似文献   

14.
To identify a chromosomal region of Streptococcus pneumoniae serotype 14 involved in capsule polysaccharide synthesis, two strategies were used: (i) Tn916 mutagenesis, followed by the characterization of four unencapsulated mutants, and (ii) cross-hybridization with a capsule polysaccharide synthesis gene (cps) probe from S. agalactiae, which has a structurally similar capsule. The two approaches detected the same chromosomal region consisting of two adjacent EcoRI fragments. One of these EcoRI fragments was cloned and hybridized with a cosmid library. This resulted in clone cMKO2. A similar cosmid clone was obtained from an unencapsulated Tn916 mutant, Spnl4.H. Sequence analysis of the two cosmid clones revealed that in the Tn916 mutant, a gene, cps14E, which is homologous to other bacterial genes encoding glycosyl transferases, had been inactivated. An open reading frame immediately downstream of cps14E, designated cps14F, shows no significant homology with any known genes or proteins. A functional assay showed that cps14E encodes a glycosyl transferase and that a gene-specific knockout mutant lacks this enzyme activity, whereas inactivation of cps14F does not have this effect.  相似文献   

15.
灰葡萄孢丝裂原活化蛋白激酶编码基因bmp1和bmp3的功能   总被引:1,自引:0,他引:1  
【背景】植物病原真菌丝裂原活化蛋白激酶(Mitogen-activated protein kinase,MAPK)信号途径参与病菌有性生殖、细胞壁完整、菌丝侵染、致病力、胁迫响应等过程,灰葡萄孢MAPK信号途径参与病菌生长发育、致病力以及胁迫响应,但MAPK信号途径基因在灰葡萄孢中的功能尚未完全阐明,该信号途径对灰葡萄孢的生长发育和致病力的调控机制尚不明确。【目的】明确灰葡萄孢MAPK编码基因bmp1、bmp3在病菌生长发育、致病力以及氧化胁迫响应过程的功能,为进一步阐明MAPK信号途径调控灰葡萄孢生长发育和致病力的分子机制奠定基础。【方法】利用RNAi技术构建灰葡萄孢MAPK编码基因bmp1和bmp3的RNAi突变体,并以野生型BC22菌株为对照,对bmp1和bmp3基因的RNAi突变体的表型、致病力以及对氧化胁迫的敏感性进行分析。【结果】灰葡萄孢bmp1和bmp3基因的RNAi突变体其菌落形态、菌丝形态均与野生型BC22菌株没有明显差别;bmp1基因的RNAi突变体生长速率明显减慢,分生孢子产量明显降低;bmp3基因的RNAi突变体的生长速率与野生型BC22菌株没有明显差别,不能产生分生孢子。bmp1和bmp3基因的RNAi突变体在番茄果实的表面均不能产生明显的致病症状,而且不能穿透玻璃纸。bmp1基因的RNAi突变体在含有H_2O_2的培养基上受抑制的程度显著低于野生型,而在含甲萘醌的培养基上受抑制的程度显著高于野生型;bmp3基因的RNAi突变体在含有H_2O_2和甲萘醌的培养基受抑制的程度均显著高于野生型。【结论】灰葡萄孢bmp1基因正调控病菌生长、分生孢子形成、致病力和穿透能力,参与调控病菌对氧化胁迫的响应;灰葡萄孢bmp3基因正调控病菌分生孢子形成、致病力、穿透能力以及对氧化胁迫的响应。  相似文献   

16.
C E Rubens  L M Heggen 《Plasmid》1988,20(2):137-142
The tetracycline resistance gene encoded within the transposon Tn916 was replaced with the gene encoding erythromycin resistance from the plasmid pVA838. The derivative transposon of Tn916 was designated Tn916 delta E and was introduced into the Streptococcus faecalis chromosome by protoplast transformation. The conjugation/transposition functions of Tn916 delta E were similar to those observed for Tn916 in S. faecalis and Tn916 delta E was capable of self-conjugation at frequencies similar to those of other S. faecalis and Group B Streptococcus. This transposon will be useful for mutagenesis studies in gram-positive organisms, especially in those species where erythromycin resistance is a more desirable selectable marker.  相似文献   

17.
Phenotypic bacitracin resistance has been reported in Clostridium perfringens. However, the genes responsible for the resistance have not yet been characterized. Ninety-nine C. perfringens isolates recovered from broilers and turkeys were tested for phenotypic bacitracin resistance. Bacitracin MIC(90) (>256 μg/ml) was identical for both turkey and chicken isolates; whereas MIC(50) was higher in turkey isolates (6 μg/ml) than in chicken isolates (3 μg/ml). Twenty-four of the 99 isolates showed high-level bacitracin resistance (MIC breakpoint >256 μg/ml) and the genes encoding for this resistance were characterized in C. perfringens c1261_A strain using primer walking. Sequence analysis and percentages of amino acid identity revealed putative genes encoding for both an ABC transporter and an overproduced undecaprenol kinase in C. perfringens c1261_A strain. These two mechanisms were shown to be both encoded by the putative bcrABD operon under the control of a regulatory gene, bcrR. Efflux pump inhibitor thioridazine was shown to increase significantly the susceptibility of strain c1261_A to bacitracin. Upstream and downstream from the bcr cluster was an IS1216-like element, which may play a role in the dissemination of this resistance determinant. Pulsed-field gel electrophoresis with prior double digestion with I-CeuI/MluI enzymes followed by hybridization analyses revealed that the bacitracin resistance genes bcrABDR were located on the chromosome. Semi-quantitative RT-PCR demonstrated that this gene cluster is expressed under bacitracin stress. Microarray analysis revealed the presence of these genes in all bacitracin resistant strains. This study reports the discovery of genes encoding for a putative ABC transporter and an overproduced undecaprenol kinase associated with high-level bacitracin resistance in C. perfringens isolates from turkeys and broiler chickens.  相似文献   

18.
19.
We undertook the study of the use of glutamine (Gln) as the source of carbon and energy by Rhizobium etli. Tn5-induced mutagenesis allowed us to identify several genes required for Gln utilization, including those coding for two broad-range amino acid transporters and a glutamate dehydrogenase. The isolated mutants were characterized by the analysis of their capacity i) to grow on different media, ii) to transport Gln (uptake assays), and iii) to utilize Gln as the C energy source (CO2 production from Gln). We show that Gln is degraded through the citric acid cycle and that its utilization as the sole C source is related to a change in the bacterial cell shape (from bacillary to coccoid form) and a high susceptibility to a thiol oxidative insult. Both these data and the analysis of ntr-dependent promoters suggested that Gln-grown bacteria are under a condition of C starvation and N sufficiency, and as expected, the addition of glucose counteracted the morphological change and increased both the bacterial growth rate and their resistance to oxidative stress. Finally, a nodulation analysis indicates that the genes involved in Gln transport and degradation are dispensable for the bacterial ability to induce and invade developing nodules, whereas those involved in gluconeogenesis and nucleotide biosynthesis are strictly required.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号