首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The effect of Ca2+-binding protein regucalcin on protein kinase activity in the nuclei of normal and regenerating rat livers was investigated. Protein kinase activity in the nuclei isolated from normal rat liver was significantly increased by addition of Ca2+ (500 μM) and calmodulin (10 μg/ml) in the enzyme reaction mixture. Nuclear protein kinase activity was significantly decreased in the presence of EGTA (1.0 mM), trifluoperazine (TFP; 20 μM), dibucaine (10−4 M), or staurosporine (10−7 M), indicating that Ca2+-dependent protein kinases are present in the nuclei. Protein kinase activity was significantly elevated in the liver nuclei obtained at 6 to 48 h after a partial hepatectomy. Hepatectomy-increased nuclear protein kinase activity was significantly decreased in the presence of EGTA (1.0 mM), TFP (20 μM), or staurosporine (10−7 M) in the enzyme reaction mixture. The presence of regucalcin (0.1–0.5 μM) caused a significant decrease in protein kinase activity in the nuclei obtained from normal and regenerating rat livers. Meanwhile, the nuclear protein kinase activity from normal and regenerating livers was significantly elevated in the presence of anti-regucalcin monoclonal antibody (50–200 ng/ml). The present study suggests that regucalcin plays a role in the regulation of protein kinase activity in the nuclei of proliferative liver cells. J. Cell. Biochem. 71:569–576, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytosol, on Ca2+/calmodulin-dependent cyclic nucleotide (AMP) phosphodiesterase activity in rat liver cytosol was investigated. The addition of Ca2+ (50 µM) and calmodulin 160 U/ml in the enzyme reaction mixture caused a significant increase in cyclic AMP phosphodiesterase activity. This increase was inhibited by the presence of regucalcin (0.5-3.0 µM); the inhibitory effect was complete at 1.0 µM. Regucalcin (1.0 µM) did not have an appreciable effect on basal activity without Ca2+ and calmodulin. The inhibitory effect of regucalcin was still evident even at several fold higher concentrations of calmodulin (160–480 U/ml). However, regucalcin (1.0 µM) did not inhibit Ca2+/calmodulin-dependent cyclic AMP phosphodiesterase activity in the presence of 100 and 200 µM Ca2+ added. Meanwhile, Cd2 (25–100 µM)-induced decrease in Ca2+/calmodulin-dependent cyclic AMP phosphodiesterase activity was not reversed by the presence of regucalcin (1.0 µM). The present results suggest that regucalcin can regulate Ca2+/calmodulin-dependent cyclic AMP phosphodiesterase activity due to binding Ca2+ in liver cells.  相似文献   

3.
Regucalcin, a calcium-binding protein isolated from rat liver cytosol, inhibited Ca2(+)- and phospholipid-dependent protein kinase (protein kinase C) activity in hepatic cytosol. With the increasing concentrations of Ca2+ or phosphatidylserine in the medium, regucalcin caused a remarkable inhibition of protein kinase C activity. Moreover, regucalcin significantly inhibited dioctanoylglycerol-activated protein kinase C. Regucalcin itself did not have protein kinase activity in either the presence or the absence of Ca2+ and phospholipids. These findings clearly indicate that regucalcin has an inhibitory effect on protein kinase C in hepatic cytosol. This inhibitory effect of regucalcin may be due to the regucalcin-induced Ca2+ binding and/or the direct binding of regucalcin to protein kinase C.  相似文献   

4.
The effect of nuclear Ca2+ uptake inhibitors on the Ca2+-activated DNA fragmentation in rat liver nuclei was investigated. The addition of Ca2+ (40 M) into the reaction mixture containing liver nuclei in the presence of 2.0 mM ATP caused a remarkable increase in nuclear DNA fragmentation. This Ca2+-activated DNA fragmentation was not seen in the absence of ATP, because nuclear Ca2+ uptake is not initiated without ATP addition. Moreover, the presence of various reagents (10 M arachidonic acid, 2.0 mM NAD+, 10 M zinc sulfate and 0.2 mM N-ethylmaleimide), which could inhibit Ca2+-ATPase activity and Ca2+ uptake in the nuclei, produced a significant inhibition of the Ca2+-activated DNA fragmentation in the nuclei. The results show that the Ca2+-activated DNA fragmentation is involved in the uptake of Ca2+ by the nuclei, suggesting a role of Ca2+ transport system in the regulation of liver nuclear functions.  相似文献   

5.
The basis for the hypersensitive response of glycogen phosphorylase to epinephrine stimulation was investigated in adult rat cardiomyocytes isolated from normal and alloxan-diabetic animals. To assess potential G-protein involvement in the response, normal and diabetic derived myocytes were incubated with either cholera or pertussis toxin prior to hormonal stimulation. Pretreatment of cardiomyocytes with cholera toxin resulted in a potentiated response to epinephrine stimulation whereas pertussis toxin did not affect the activation of this signaling pathway. To determine if the enhanced response of phosphorylase activation resulted from an alteration in adenylate cyclase activation, the cells were challenged with forskolin. After 3 hr in primary culture, diabetic cardiomyocytes exhibited a hypersensitive response to forskolin stimulation relative to normal cells. However, after 24 hr in culture, both normal and diabetic myocytes responded identically to forskolin challenge. The present data suggest that a cholera toxin sensitive G-protein mediates the hypersensitive response of glycogen phosphorylase to catecholamine stimulation in diabetic cardiomyocytes and this response which is present in alloxan-diabetic cells and is induced in vitro in normal cardiomyocytes is primarily due to a defect at a post-receptor site.  相似文献   

6.
The role of regucalcin, which is a regulatory protein of calcium signaling, in the regulation of protein phosphatase activity in the nuclei of rat kidney cortex was investigated. Protein phosphatase activity towards phosphotyrosine, phosphoserine, and phosphothreonine was found in the nuclei. The enzyme activity towards three phosphoamino acids was significantly increased by the addition of calcium chloride (10-50 microM) in the enzyme reaction mixture. This increase was significantly inhibited by trifluoperazine (25 or 50 microM), an antagonist of calmodulin. The presence of regucalcin (50 or 100 nM) in the enzyme reaction mixture caused a significant decrease in protein phosphatase activity towards three phosphoamino acids. This effect was also seen in the presence of calcium (25 microM) and/or calmodulin (5 microg/ml). Protein phosphatase activity towards three phosphoamino acids was significantly increased in the presence of anti-regucalcin monoclonal antibody (25 or 50 ng/ml) in the enzyme reaction mixture. This effect was completely blocked by the addition of regucalcin (100 nM). The effect of antibody (25 ng/ml) in increasing protein phosphatase activity towards phosphotyrosine was significantly inhibited by vanadate (10(-4) M). Also, the antibody's effect towards phosphoserine and phosphothreonine was significantly inhibited by cyclosporin A (10(-5) M). Endogenous regucalcin was found in the nuclei of rat kidney cortex using Western blot analysis. Nuclear regucalcin level was significantly reduced by the administration of saline (0.9% NaCl) for seven days in rats. Protein phosphatase activity towards three phosphoamino acids was significantly decreased by saline administration. The effect of anti-regucalcin monoclonal antibody (25 ng/ml) in increasing protein phosphatase activity towards three phosphoamino acids was weakened in the renal cortex nuclei of saline-administrated rats. The present study demonstrates that endogenous regucalcin plays a suppressive role in the regulation of protein phosphatase activity in the nuclei of rat kidney cortex cells.  相似文献   

7.
8.
The effect of regucalcin on Ca2+/calmodulin-dependent protein kinase activity in the cytosol of rat renal cortex was investigated. Regucalcin is a calcium-binding protein which exists in rat liver and renal cortex. Protein kinase activity in renal cortex cytosol was markedly increased by the addition of CaCl2 (0.5 mM) plus calmodulin (10 µg/ml) in the enzyme reaction mixture. This increase was completely prevented by the addition of trifluoperazine (25 µM), an antagonist of calmodulin. The cytosolic Ca2+/calmodulin- dependent protein kinase activity was clearly inhibited by the addition of regucalcin; an appreciable effect of regucalcin was seen at 0.01 µM. The cytosolic Ca2+/calmodulin-dependent protein kinase activity was fairly increased by increasing concentrations of added Ca2+ (100-1000 µM). This increase was markedly blocked by the presence of regucalcin (0.1 µM). The inhibitory effect of regucalcin on the protein kinase activity was also seen with varying concentrations of calmodulin (2-20 µg/ml). These results demonstrate that regucalcin can regulate Ca2+/calmodulin-dependent protein kinase activity in renal cortex cells.  相似文献   

9.
Calcium-activated DNA fragmentation in rat liver nuclei   总被引:12,自引:0,他引:12  
Incubation of isolated rat liver nuclei with ATP, NAD+, and submicromolar Ca2+ concentrations resulted in extensive DNA hydrolysis. Half-maximal activity occurred with 200 nM Ca2+, and saturation of the process was observed with 1 microM Ca2+. ATP stimulated a calmodulin-dependent nuclear Ca2+ uptake system which apparently mediated endonuclease activation. Ca2+-activated DNA fragmentation was inhibited by the inhibitor of poly(ADP-ribose) synthetase, 3-aminobenzamide, and was associated with poly(ADP-ribosyl)ation of nuclear protein. The characteristics of this endonuclease activity indicate that it may be responsible for the Ca2+-dependent fragmentation of DNA involved in programmed cell death (apoptosis) and in certain forms of chemically induced cell killing.  相似文献   

10.
The effect of regucalcin, a novel Ca2+-binding protein, on Ca2+/ calmodulin-dependent cyclic adenosine monophosphate (AMP) phosphodiesterase activity in the cytosol of rat renal cortex was investigated. Regucalcin with physiologic concentration (10-7 M) in rat kidney had no effect on cyclic AMP phosphodiesterase activity in the absence of CaCl2 and calmodulin. However, the activatory effect of both CaCl2 (10 µM) and calmodulin (20 U/ml) on cyclic AMP phosphodiesterase was markedly inhibited by the addition of regucalcin (10-8 to 10-6 M) in the enzyme reaction mixture. The inhibitory effect of regucalcin on the enzyme activity was also seen in the presence of CaCl2 (5-50 µM) or calmodulin (5-50 U/ml) with increasing concentrations. The presence of trifluoperazine (10 µM), an antagonist of calmodulin, caused a partial inhibition of Ca2+ /calmodulin-dependent cyclic AMP phosphodiesterase activity. This inhibition was further enhanced by the addition of regucalcin (10-7 M). The inhibitory effect of regucalcin (10-7 M) was not seen in the presence of 20 µM trifluoperazine. Moreover, the activatory effect of calmodulin (20 U/ml) on cyclic AMP phosphodiesterase was not entirely seen, when calmodulin was added 10 min after incubation in the presence of CaCl2 (10 µM) and regucalcin (10-7 M). The present results demonstrates that regucalcin has an inhibitory effect on Ca2+ /calmodulin-dependent cyclic AMP phosphodiesterase activation in the cytosol of rat renal cortex.  相似文献   

11.
The expression of hepatic calcium-binding protein regucalcin mRNA in fetal rats was investigated. The alteration in regucalcin mRNA levels was analyzed by Northern blotting using liver regucalcin cDNA (0.9 kb with complete open reading frame). Hepatic regucalcin mRNA levels were progressively increased with fetal development; the mRNA was clearly expressed at 15 and 21 days of pregnancy but only slightly at the 8 days. Meanwhile, -actin mRNA levels in the fetal liver were remarkable at 8 and 15 days of pregnancy. The fetal liver regucalcin mRNA levels at 15 days of pregnancy were significantly decreased by overnight-fasting of maternal rats. The oral administration of calcium chloride (50 mg Ca/100 g body weight) to maternal rats at 15 days of pregnancy caused a remarkable elevation (about 2 fold) of regucalcin mRNA levels in the fetal liver; this increase was seen 60 and 180 min after the calcium administration. After birth, regucalcin mRNA was increasingly expressed in the livers of newborn and weanling rats, while hepatic -actin mRNA expression was not appreciably altered with increasing ages. These findings demonstrate that the expression of hepatic regucalcin mRNA is increased with fetal development, and that the gene expression may be stimulated by the ingestion of dietary calcium.  相似文献   

12.
The regulatory role of regucalcin on protein phosphatase activity in isolated rat liver nuclei was investigated. Phosphatase activity toward phosphotyrosine and phosphoserine was significantly increased by the addition of CaCl(2) (10(-5) and 10(-4) M) in the enzyme reaction mixture. Trifluoperazine (25 and 50 microM), an antagonist of calmodulin, significantly inhibited protein phosphatase activity toward phosphoserine, while it had no effect on the enzyme activity toward phosphotysine and phosphothreonine. Cyclosporin A (10(-6)-10(-4) M), an inhibitor of Ca(2+)/calmodulin-dependent protein phosphatase activity toward phosphoserine, but not phosphotyrosine and phosphoserine. Thus, Ca(2+)/calmodulin-dependent phosphatases were present in liver nuclei. Regucalcin (0.25 and 0.5 microM) had an inhibitory effect on liver nuclear phosphatase activity toward phosphotyrosine, phosphoserine, and phosphothreonine. The presence of anti-regucalcin monoclonal antibody (25 and 50 ng/ml) in the enzyme reaction mixture caused a significant elevation of nuclear phosphatase activity toward three phosphoaminoacids. An analysis with sodium sulfate-polyacrylamide gel electrophoresis suggested a possibility of localization of regucalcin in liver nuclei. Moreover, regucalcin was determined in liver nuclei using enzyme-linked immunoadsorbent assay. The present study demonstrates that the endogenous regucalcin inhibits phosphatase activity in the liver nuclei.  相似文献   

13.
The role of endogenous regucalcin in the regulation of Ca(2+)-ATPase, a Ca(2+) sequestrating enzyme, in rat liver nuclei was investigated. Nuclear Ca(2+)-ATPase activity was significantly reduced by the addition of regucalcin (0.1-0.5 microM) into the enzyme reaction mixture. The presence of anti-regucalcin monoclonal antibody (25 or 50 ng/ml) caused a significant elevation of Ca(2+)-ATPase activity; this effect was completely abolished by the addition of regucalcin (0.1 microM). The effect of anti-regucalcin antibody (50 ng/ml) in increasing Ca(2+)-ATPase activity was completely prevented by the presence of thapsigargin (10(-6) M), an inhibitor of Ca(2+) sequestrating enzyme, N-ethylmaleimide (1 mM), a modifying reagent of thiol groups, or vanadate (10(-5) M), an inhibitor of phosphorylation of the enzyme by ATP, which revealed an inhibitory effect on nuclear Ca(2+)-ATPase activity. Meanwhile, the effect of anti-regucalcin antibody (50 ng/ml) was significantly enhanced by the addition of calmodulin (5 microg/ml), which could increase nuclear Ca(2+)-ATPase activity. In addition, the effect of antibody (50 ng/ml) was significantly reduced by the presence of trifluoperazine (20 microM), an antagonist of calmodulin. These results suggest that the endogenous regucalcin in liver nuclei has a suppressive effect on nuclear Ca(2+)-ATPase activity, and that regucalcin can inhibit an activating effect of calmodulin on the enzyme.  相似文献   

14.
The effect of Ca(2+)-binding protein regucalcin on Ca(2+)-ATPase activity in isolated rat liver mitochondria was investigated. The presence of regucalcin (0.1, 0.25, and 0.5 microM) in the enzyme reaction mixture led to a significant increase in Ca(2+)-ATPase activity. Regucalcin significantly stimulated ATP-dependent (45)Ca(2+) uptake by the mitochondria. Ruthenium red (10(-5) M) or lanthanum chloride (10(-4) M), an inhibitor of mitochondrial Ca(2+) uptake, completely inhibited regucalcin (0.25 microM)-increased mitochondrial Ca(2+)-ATPase activity and (45)Ca(2+) uptake. The effect of regucalcin (0.25 microM) in increasing Ca(2+)-ATPase activity was completely inhibited by the presence of digitonin (10(-2)%), a solubilizing reagent of membranous lipids, or vanadate (10(-5) M), an inhibitor of phosphorylation of ATPase. The activatory effect of regucalcin (0.25 microM) on Ca(2+)-ATPase activity was not further enhanced in the presence of dithiothreitol (2.5 mM), a protecting reagent of the sulfhydryl (SH) group of the enzyme, or calmodulin (0.60 microM), a modulator protein of Ca(2+) action that could increase mitochondrial Ca(2+)-ATPase activity. The present study demonstrates that regucalcin can stimulate Ca(2+) pump activity in rat liver mitochondria, and that the protein may act on an active site (SH group)-related to phosphorylation of mitochondrial Ca(2+)-ATPase.  相似文献   

15.
The effect of regucalcin, a Ca2+-binding protein isolated from rat liver cytosol, on deoxyribonucleic acid (DNA) synthesis in the nuclei of regenerating rat liver was investigated. At 1 day after partial hepatectomy, the liver weight was increased about 50% of that of sham-operated rats, and it reached to the same levels as sham operation at 3 days after hepatectomy. Nuclear DNA synthesis was markedly increased at 1 day after hepatectomy, and this increase was also seen at 3 days. Nuclear DNA synthesis was clearly enhanced in the presence of EGTA (0.4 mM) in the incubation mixture. The presence of Ca2+ ( 1.0–25 M) caused a significant decrease in the nuclear DNA synthesis of normal rat liver. Regucalcin (0.25 and 0.5 M) clearly inhibited the nuclear DNA synthesis of normal rat liver. This inhibition was also seen in the presence of Ca2+ (1.0 M). Moreover, in the liver nuclei obtained at 1 day after partial hepatectomy, the presence of regucalcin (0.05–0.5 M) caused a remarkable inhibition of nuclear DNA synthesis. This effect was also revealed in the presence of EGTA (0.4 mM). Thus, the inhibitory effect of regucalcin was remarkable in regenerating rat liver nuclei in comparison with that of normal rat liver. The present results demonstrate that regucalcin can suppress nuclear DNA synthesis in regenerating rat liver. We suppose that regucalcin may have a role in the regulation of nuclear DNA synthesis in liver cell proliferation.  相似文献   

16.
The alteration of regucalcin concentrations in the liver and serum of rats administered orally calcium is investigated. Rats received a single oral administration of calcium chloride solution (25, 50 and 75 mg Ca/100 g body weight). The administration of calcium (50 mg/100 g) produced a significant increase in liver regucalcin concentration between 30 and 180 min after the administration, while serum regucalcin concentration was not altered appreciably. The effect of calcium administration increasing liver regucalcin concentration was also seen with the dose of 25 mg/100 g. When liver cytosol prepared from normal rats was incubated for 6 h in the presence of 10 M Ca2+, the cytosolic regucalcin concentration at 3 and 6 h of incubation was decreased about 20% (p<0.05) as compared with the value at zero time point, indicating that the presence of Ca2+ does not inhibit the decomposition of liver cytosolic regucalcin. Moreover, serum regucalcin concentration was not significantly altered by the incubation for 6 h at 37°C, indicating a stability of regucalcin in rat serum. This suggests that the calcium administration-induced in liver regucalcin concentration is not based on the inhibition of regucalcin release from liver to serum. The present study demonstrates that regucalcin in the liver is clearly increased by calcium administration, presumably due to stimulating the protein synthesis.  相似文献   

17.
The involvement of a hypocalcemic hormone calcitonin (CT) in the expression of hepatic Ca2+-binding protein regucalcin mRNA was investigated. The change of regucalcin mRNA levels was analyzed by Northern blotting using liver regucalcin complementary DNA (0.9 kb). A single oral administration of calcium chloride (100 mg Ca/100 g body weight) to rats induced a remarkable increase in the serum calcium concentration and a corresponding elevation of the liver calcium content during 120 min after the administration. Thyroparathyroidectomy (TPTX) did not cause a significant increase in the liver calcium content after calcium administration. Hepatic regucalcin mRNA level was markedly elevated by calcium administration; the level was about 180% of controls at 60 min after the administration. This increase was completely abolished by TPTX. A single subcutaneous administration of CT (synthetic eel CT; 25–100 MRC mU/100 g) to TPTX rats received oral administration of calcium (100 mg/100 g) produced a remarkable increase in hepatic regucalcin mRNA levels; the level was about 280% of controls with the dose of 25 MRC mU CT/100 g. The present finding suggests that the expression of hepatic mRNA is stimulated by CT, and that the hormonal effect is mediated through Ca2+ in rat liver.  相似文献   

18.
The effect of regucalcin, a calcium-binding protein, on ATP-dependent Ca2+ transport in the basolateral membranes isolated from rat kidney cortex was investigated. The prepared membranes were in inside-out oriented and membrane vesicles. Ca2+-ATPase activity in the basolateral membranes was progressively elevated by increasing concentrations of regucalcin (10-8 to 10-6 M) in the reaction mixture. This increase was dependent on Ca2+ addition. The activatory effect of regucalcin on the enzyme is inhibited by the presence of digitonin (5 × 10-6%) which can solubilize the membranous lipids. Moreover, the regucalcin effect was clearly abolished by the presence of vanadate (0.1 mM) or N-ethylmaleimide (5.0 mM). However, the effect of calmodulin (6 × 10-7 M) to increase Ca2+-ATPase activity was not significantly inhibited by vanadate or N-ethylmaleimide, indicating that the action mode of regucalcin differs from that of calmodulin. Also, the activatory effect of regucalcin on Ca2+-ATPase was appreciably inhibited by addition of dibutyryl cAMP (10-5 and 10-3 M), while inositol 1,4,5-trisphosphate (10-7 and 10-5 M) had no effect. Dibutyryl cAMP itself did not have an effect on the enzyme activity. Furthermore, the 45Ca2+ uptake by the basolateral membranes was clearly increased by the presence of regucalcin (10-7 and 10-6 M). This increase was completely blocked by the presence of vanadate (0.1 mM), N-ethylmaleimide (5.0 mM) or dibutyryl cAMP (10-4 and 10-3 M) in the reaction mixture. These results clearly demonstrate that regucalcin, which is expressed in rat kidney cortex, can increase Ca2+-ATPase activity and Ca2+ uptake in the basolateral membranes. Regucalcin may play a cell physiologic role as an activator in the ATP-dependent Ca2+ pumps in the basolateral membranes from rat kidney cortex.  相似文献   

19.
Expression of calcium-binding protein regucalcin mRNA in hepatoma cells   总被引:3,自引:0,他引:3  
Whether the gene expression of hepatic Ca2+-binding protein regucalcin is altered in hepatomas was investigated. The change in regucalcin mRNA levels was analyzed by Northern blotting using liver regucalcin complementary DNA (0.9 kb). Rat hepatoma was induced by continuous feeding of basal diet containing 0.06% 3-methyl-4-dimethylaminoazobenzene (3-Me-DAB). After 35 weeks feeding, rats were sacrificed, and the non-tumorous and tumorous tissues of the livers were removed. In individual rats, the regucalcin mRNA levels in the tumorous tissues were generally decreased in comparison with that of the non-tumorous tissues of the chemical-fed rats, although the chemical administration might decrease the mRNA expression in normal rat liver, suggesting that the chemical administration causes a suppresive effect on the mRNA expression. When the genomic DNA extracted from the liver tumorous tissues was digested with restriction enzymes (EcoRI, BamHI and HindIII) and analyzed by Southern blotting, no rear-ranged band was found in the regucalcin gene from the hepatoma. Interestingly, in the transplantable Morris hepatoma cells, the regucalcin mRNA was markedly expressed, while the albumin mRNA was expressed only slightly. The present study demonstrates that regucalcin mRNA is clearly expressed in the transformed cells (Morris hepatoma cells).  相似文献   

20.
Rat liver plasma membranes hydrolyze ATP in the presence of Ca2+. The rate of hydrolysis is different when Mg2+ions are present in the incubation system. Several parameters differentiate Ca2+-ATPase from Mg2+-ATPase: a) the Km of ATP hydrolysis for Ca2+ (2.25 x 10(-4) M) is lower than for Mg2+ (2.14 x 10(-3) M); b) the shape of the activation curve is hyperbolic in the presence of Ca2+ and sigmoid in the presence of Mg2+; c) Mg2+-ATPase shows two different values of activation energy while Ca2+-ATPase presents only a single value; d) Ca2+-ATPase is inhibited, while Mg2+-ATPase is unaffected by cyclic AMP. Ca2+-ATPase is localized on the plasma membrane and is not inhibited by cysteine. It does not hydrolyze substrates different from nucleotides triphosphate, such as glucose-1-phosphate or alpha-glycero-phosphate. The enzyme is probably related to a mechanism of calcium transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号