首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inactivation of aerosolized Escherichia coli by ozone, cyclohexene, and ozonized cyclohexene was studied. The parameters for damage were loss of reproduction and introduction of breaks in the deoxyribonucleic acid (DNA). Aerosolization of E. coli in clean air at 80 percent relative humidity or in air containing either ozone or cyclohexene hardly affected survival; however, some breaks per DNA molecule were induced, as shown by sucrose gradient sedimentation of the DNA. Aerosolization of E. coli in air containing ozonized cyclohexene at 80 percent relative humidity decreased the survival by a factor of 10(3) or more after 1 h of exposure and induced many breaks in the DNA.  相似文献   

2.
Aims:  To investigate the effect of extrinsic control parameters for ozone inactivation of E. coli in a bubble column.
Methods and Results:  Ozone inactivation of Escherichia coli ATCC 25922 in Tryptic Soya Broth was examined. The parameters studied included temperature (ambient, 20, 25 and 30°C), exposure time (up to 30 min), gas flow rate (0·03, 0·06, 0·12, 0·25, 0·5 and 0·75 l min−1) and concentration level (five different levels). The efficacy of ozone treatment was a function of the parameters investigated and optimum control parameters of flow rate (0·12 l min−1), temperature (ambient) and ozone concentration (75  μ g ml−1) resulted in a t d5 (time required to achieve 5 log reduction) of 20 min.
Conclusions:  Optimum control parameters of gas flow rate, ozone concentration and temperature are reported for E. coli inactivation within a bubble column.
Significance and Impact of the Study:  In 2001, the FDA approved use of ozone as a direct additive to food and in 2004, issued guidelines for the use of ozone in liquid systems. However, these guidelines highlighted gaps in the literature for ozonation of liquid foods. This study provides useful information regarding optimum extrinsic control parameters for E. coli inactivation in liquid media using a bubble column to ensure microbiological safety.  相似文献   

3.
In steadily flowing water at 20 degrees C and pH 7, five organisms had the following order of resistance to ozone (at constant levels of ozone): poliovirus 1 (PV1) less than Escherichia coli less than hepatitis A virus (HAV) less than Legionella pneumophila serogroup 6 less than Bacillus subtilis spores. The tests were repeated at 10 degrees C with HAV, PV1, and E. coli. Ozone inactivation of HAV and E. coli was faster at 10 degrees C than at 20 degrees C. At 20 degrees C, 0.25 to 0.38 mg of O3 per liter was required for complete inactivation of HAV but only 0.13 mg of O3 per liter was required for complete inactivation of PV1.  相似文献   

4.
In steadily flowing water at 20 degrees C and pH 7, five organisms had the following order of resistance to ozone (at constant levels of ozone): poliovirus 1 (PV1) less than Escherichia coli less than hepatitis A virus (HAV) less than Legionella pneumophila serogroup 6 less than Bacillus subtilis spores. The tests were repeated at 10 degrees C with HAV, PV1, and E. coli. Ozone inactivation of HAV and E. coli was faster at 10 degrees C than at 20 degrees C. At 20 degrees C, 0.25 to 0.38 mg of O3 per liter was required for complete inactivation of HAV but only 0.13 mg of O3 per liter was required for complete inactivation of PV1.  相似文献   

5.
A recombinant plasmid containing a Serratia marcescens DNA repair gene has been analyzed biochemically and genetically in Escherichia coli mutants deficient for repair of alkylated DNA. The cloned gene suppressed sensitivity to methyl methanesulfonate of an E. coli strain deficient in 3-methyladenine DNA glycosylases I and II (i.e., E. coli tag alkA) and two different E. coli recA mutants. Attempts to suppress the methyl methanesulfonate sensitivity of the E. coli recA mutant by using the cloned E. coli tag and alkA genes were not successful. Southern blot analysis did not reveal any homology between the S. marcescens gene and various known E. coli DNA repair genes. Biochemical analysis with the S. marcescens gene showed that the encoded DNA repair protein liberated 3-methyladenine from alkylated DNA, indicating that the DNA repair molecular is an S. marcescens 3-methyladenine DNA glycosylase. The ability to suppress both types of E. coli DNA repair mutations, however, suggests that the S. marcescens gene is a unique bacterial DNA repair gene.  相似文献   

6.
A gene, ozrC, responsible for sensitivity to ozone in Escherichia coli, was localized on the E. coli chromosome between argEH and metA by means of analysis of cotransduction frequencies of the gene ozrC with certain gene markers in the malB region of the chromosome.  相似文献   

7.
Supercoiled minicircular deoxyribonucleic acid (DNA) molecules with molecular weights of 1.8 x 10(6) and 2.3 x 10(6) have been isolated from two wild strains of Escherichia coli. DNA-DNA hybridization experiments indicate that these DNA molecules share extended homologies with the minicircular DNA of E. coli 15. The DNA of the colicinogenic factor E1 (ColE1) also hybridizes to a large extent with minicircular DNA of E. coli 15. In contrast, no hybridization could be detected with various large extrachromosomal DNA elements such as the colicinogenic factor V (ColV), the beta-hemolytic factor (Hly), or the P1-like DNA of E. coli 15. Two different insertion DNA species of E. coli integrated into lambdadg-DNA (lambdadg UP(in) 128, lambdadg UP(in) 308) do not show any annealing with minicircular DNA of E. coli 15.  相似文献   

8.
Role of DNA in Bacterial Aggregation   总被引:1,自引:0,他引:1  
The role of DNA in bacterial aggregation was determined using various types of DNA and Escherichia coli, a good model for investigating the correlation between added polymer and bacterial aggregation and adsorption of polymer to bacterial surfaces. The results of the aggregation assay suggest that extracellular DNA indeed increased the aggregation percentage of E. coli, but this effect was dependent on DNA concentration and length. Moreover, DNA promoted bacterial aggregation in a type-nonspecific way. The combined results of the aggregation assay and the adsorption assay show further that the promotion of E. coli aggregation by DNA occurred along with adsorption of DNA to E. coli. Consequently, the possible mechanisms for DNA-promoted bacterial aggregation are discussed. Using fluorescent-labeled DNA, we mapped DNA within the E. coli aggregates. Subsequently, introduction of DNase I broke up the DNA-involved E. coli aggregates. These results suggest that DNA functions as a molecular bridge to promote E. coli aggregation.  相似文献   

9.
Sensitivity of Three Selected Bacterial Species to Ozone   总被引:8,自引:5,他引:3       下载免费PDF全文
THE MINIMAL LETHAL CONCENTRATION OF OZONE IN WATER WAS DETERMINED FOR THREE BACTERIAL SPECIES: Escherichia coli, Bacillus cereus, and Bacillus megaterium. A contact period of 5 min was selected. The lethal threshold concentration for the cells of B. cereus was 0.12 mg/liter while that for E. coli and B. megaterium was 0.19 mg/liter. Low concentrations of ozone were ineffective when organic matter was present to interfere with the action of ozone on the bacterial cells. Also determined during the study was the sensitivity of spores of B. cereus and B. megaterium to ozone in water. The threshold concentration required to kill the spores of both species was 2.29 mg/liter. The cells and spores of these organisms exhibited the "all-or-none" die-away phenomenon normally associated with ozone treatment.  相似文献   

10.
The susceptibility of Helicobacter pylori to disinfectants was compared to that of Escherichia coli. H. pylori is more resistant than E. coli to chlorine and ozone but not monochloramine. H. pylori may be able to tolerate disinfectants in distribution systems and, therefore, may be transmitted by a waterborne route.  相似文献   

11.
Studies with two uropathogenic urease-producing Escherichia coli strains, 1021 and 1440, indicated that the urease genes of each are distinct. Recombinant plasmids encoding urease activity from E. coli 1021 and 1440 differed in their restriction endonuclease cleavage sites and showed minimal DNA hybridization under stringent conditions. The polypeptides encoded by the DNA fragments containing the 1021 and 1440 urease loci differed in electrophoretic mobility under reducing conditions. Regulation of urease gene expression differed in the two ureolytic E. coli. The E. coli 1021 locus is probably chromosomally encoded and has DNA homology to Klebsiella, Citrobacter, Enterobacter, and Serratia species and to about one-half of the urease-producing E. coli tested. The E. coli 1440 locus is plasmid encoded; plasmids with DNA homology to the 1440 locus probe were found in urease-producing Salmonella spp., Providencia stuartii, and two E. coli isolates. In addition, the 1440 urease probe was homologous to Proteus mirabilis DNA.  相似文献   

12.
We studied the action of saline extracts of ventricle myocard (EM) of C57BL and mdx mice on DNA structure and repair of one-strand breaks of DNA in a modelling system. The system involves DNA repair in E. coli WP2 cells after gamma-irradiation. Using standard technique, DNA reparation was estimated on measuring the speed of E. coli DNA sedimentation in alkaline sucrose gradients. It was shown, that EM of C57BL or mdx mice exerted no influence on DNA repair, which was completely declined within 60 min with EM present in the growth medium of permeabilized E. coli. Addition of C57BL mice EM into lytic solution does not accelerate DNA sedimentation of nonirradiated E. coli. At the same time, EM of mdx mice sharply accelerates DNA sedimentation of nonirradiated E. coli reducing DNA molecular weight from 200 x 10(6) to 135 x 10(6) Da. At entering in the lytic solution the EM of mdx mice also slows down E. coli DNA repair after gamma-irradiation. It is supposed, that EM of mdx mice may contain a factor(s) damaging DNA in the E. coli lysate and presumably slowing down DNA reparation after gamma-irradiation. Russian Foundation of Basic Research Grants 99-04-49390, 02-04-49870 and 00-04-49390.  相似文献   

13.
Genomes of prokaryotes differ significantly in size and DNA composition. Escherichia coli is considered a model organism to analyze the processes involved in bacterial genome evolution, as the species comprises numerous pathogenic and commensal variants. Pathogenic and nonpathogenic E. coli strains differ in the presence and absence of additional DNA elements contributing to specific virulence traits and also in the presence and absence of additional genetic information. To analyze the genetic diversity of pathogenic and commensal E. coli isolates, a whole-genome approach was applied. Using DNA arrays, the presence of all translatable open reading frames (ORFs) of nonpathogenic E. coli K-12 strain MG1655 was investigated in 26 E. coli isolates, including various extraintestinal and intestinal pathogenic E. coli isolates, 3 pathogenicity island deletion mutants, and commensal and laboratory strains. Additionally, the presence of virulence-associated genes of E. coli was determined using a DNA "pathoarray" developed in our laboratory. The frequency and distributional pattern of genomic variations vary widely in different E. coli strains. Up to 10% of the E. coli K-12-specific ORFs were not detectable in the genomes of the different strains. DNA sequences described for extraintestinal or intestinal pathogenic E. coli are more frequently detectable in isolates of the same origin than in other pathotypes. Several genes coding for virulence or fitness factors are also present in commensal E. coli isolates. Based on these results, the conserved E. coli core genome is estimated to consist of at least 3,100 translatable ORFs. The absence of K-12-specific ORFs was detectable in all chromosomal regions. These data demonstrate the great genome heterogeneity and genetic diversity among E. coli strains and underline the fact that both the acquisition and deletion of DNA elements are important processes involved in the evolution of prokaryotes.  相似文献   

14.
Complex formation of circular, single-stranded phage fd DNA with Escherichia coli DNA binding protein HD or phage fd gene 5 protein keeps infection of E. coli spheroplasts at the level of free phage DNA, whereas complexes of this DNA with E. coli DNA unwinding protein show a strongly reduced efficiency of transfection. Displacement of the unwinding protein by HD protein or gene 5 protein also maintains the poor adsorption of the complexes to spheroplasts. Free E. coli DNA unwinding protein and residual amounts of this protein bound to the DNA may interfere with the adsorption and the uptake of the phage genome.  相似文献   

15.
P Carlsson  L Hederstedt 《Gene》1987,61(2):217-224
The 2-oxoglutarate dehydrogenase multienzyme complex is composed of three different subenzymes: 2-oxoglutarate dehydrogenase (E1o), dihydrolipoamide transsuccinylase (E2o), and dihydrolipoamide dehydrogenase (E3). Bacillus subtilis E1o and E2o are encoded by the citK and citM genes, respectively. A 3.4-kb BamHI DNA fragment containing citK and citM markers was isolated from a library of B. subtilis DNA in Escherichia coli. Functional E2o was expressed from the cloned DNA both in B. subtilis and E. coli. E2o had an apparent Mr of 60,000 when expressed in E. coli. The B. subtilis E2o component complemented an E. coli E2o-defective mutant in vivo and in vitro. It is concluded that functional B. subtilis E2o can be produced in E. coli and can interact with E. coli and E1o and E3 to form an active chimeric enzyme complex.  相似文献   

16.
It was shown that E. coli C, E. coli MRE 600 DNA, and also plasmid DNA of Col E1, RSF 2124 from E. coli K-12, and plasmid DNA from E. coli MRE 600 were completely resistant against restriction endonuclease R. Eco RII. Plasmid DNAs of Col E1, RSF 2124 amplificated for 4 hours in the presence of chloramphenicol are sensitive to R. Eco RII but after 16-hour amplification in the presence of chloramphenicol these DNAs acquire complete resistance against R. Eco RII. These data point to the slower rate of modification of DNA in vivo by DC-methylases of Eco RII type in comparison with DNA methylase Eco RII.  相似文献   

17.
On the basis of the asymmetrical charge distribution of Escherichia coli DNA topoisomerase I, we developed a new procedure to purify E. coli DNA topoisomerase I in the milligram range. The new procedure includes using both cation- and anion-exchange columns, i.e., SP-Sepharose FF and Q-Sepharose FF columns. The E. coli DNA topoisomerase I purified here is free of DNase contamination. The kinetic constants of the DNA relaxation reaction of E. coli DNA topoisomerase I were also determined.  相似文献   

18.
目的:优化大肠杆菌菌蜕装载质粒的效率,并将装载质粒的菌蜕转染抗原提呈细胞,以提高核酸疫苗的递送水平。方法:将质粒pHH43转化大肠杆菌DH5α,制备大肠杆菌菌蜕;优化菌蜕装载质粒时菌蜕、质粒和膜囊的比例,获得更高的装载效率,通过扫描及透射电镜、流式细胞术观察其形态变化及装载效率;将装载质粒的菌蜕与抗原提呈细胞——巨噬细胞RAW264.7和树突状细胞DC2.4共孵育,观察吞噬效果。结果:优化了大肠杆菌菌蜕装载质粒的效率,当菌蜕、质粒、膜囊的比例为7∶10∶4时效率达到最佳,装载DNA效率达98%以上;抗原提呈细胞吞噬装载了质粒的菌蜕,效率达100%。结论:大肠杆菌菌蜕可高效装载核酸疫苗,且高效被抗原提呈细胞捕获,有助于提高核酸疫苗的递送和免疫效果的提高。  相似文献   

19.
A segment of Bacillus subtilis chromosomal DNA homologous to the Escherichia coli spc ribosomal protein operon was isolated using cloned E. coli rplE (L5) DNA as a hybridization probe. DNA sequence analysis of the B. subtilis cloned DNA indicated a high degree of conservation of spc operon ribosomal protein genes between B. subtilis and E. coli. This fragment contains DNA homologous to the promoter-proximal region of the spc operon, including coding sequences for ribosomal proteins L14, L24, L5, S14, and part of S8; the organization of B. subtilis genes in this region is identical to that found in E. coli. A region homologous to the E. coli L16, L29 and S17 genes, the last genes of the S10 operon, was located upstream from the gene for L14, the first gene in the spc operon. Although the ribosomal protein coding sequences showed 40-60% amino acid identity with E. coli sequences, we failed to find sequences which would form a structure resembling the E. coli target site for the S8 translational repressor, located near the beginning of the L5 coding region in E. coli, in this region or elsewhere in the B. subtilis spc DNA.  相似文献   

20.
Y G Wei  S J Surzycki 《Gene》1986,48(2-3):251-256
Detection and isolation of Escherichia coli clones carrying vectors with foreign DNA sequences partially homologous to specific E. coli genes is difficult because denatured DNA in the host genome can hybridize with the probe. In this paper we present a procedure which simplifies this task by using bacteriophage M13 as the cloning vector. The procedure takes advantage of the secretory properties of the phage, as well as the property of nitrocellulose membrane to bind protein and single-stranded DNA but not double-stranded DNA. This procedure is shown to be effective in identifying E. coli clones containing sequences of Chlamydomonas reinhardtii chloroplast DNA that are homologous to the rpoC gene of E. coli. We suggest that this procedure can be used generally for rapid isolation of DNA sequences that are homologous to E. coli genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号