首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The early events in IL-1-mediated activation of T cells were investigated in the murine T cell line, EL-4. Treatment of EL-4 cells with human rIL-1 beta resulted in a rapid increase in phospholipase A2 (PLA2) activity. PLA2 activity increased approximately fivefold within 4 min after exposure to IL-1. Synthesis of the phospholipase A2- activating protein (PLAP) and its mRNA were also increased within 4 min of IL-1 treatment and preceded the increase in PLA2 enzyme activity. The increases in PLA2 activity and PLAP protein and mRNA levels were all transient and declined to baseline within 10 min after the addition of IL-1. The changes in levels of PLAP as a function of time after IL-1 treatment were consistent with PLAP playing an important role in the regulation of PLA2 activity in this system. The consequence of the elevated PLA2 activity was examined by analysis of the fatty acids released from IL-1-treated cells. There was a 20-fold increase in the release of radioactivity from [14C]-linoleic acid labeled cells whereas there was very little change in the release of radioactivity from [14C]-arachidonic acid labeled cells in response to the addition of IL-1. The radioactivity released from [14C]-linoleic acid labeled cells was analyzed by HPLC; no conversion of radiolabeled linoleic into arachidonic acid was observed. In EL-4 cells, IL-1 potentiates PMA-mediated release of IL-2 at suboptimal concentrations of PMA. Linoleic acid also augmented PMA-induced IL-2 release from the EL-4 cells. This fatty acid was more than 10 times more effective than arachidonic acid in this regard. Furthermore, the addition of exogenous PLAP to EL-4 cells could substitute for IL-1 in the stimulation of IL-2 release. These results suggest that the IL-1 effects on T cells may be mediated at least in part through increased PLA2 activity due to increased synthesis of PLAP. Furthermore, the release of the unsaturated fatty acid linoleic acid or its metabolites may be of functional importance in IL-1-mediated IL-2 production by EL-4 cells.  相似文献   

2.
Treatment of rat glomerular mesangial cells with recombinant human interleukin 1 alpha (rIL-1 alpha), recombinant human interleukin 1 beta (rIL-1 beta) or recombinant human tumor necrosis factor (rTNF) induces prostaglandin E2 (PGE2) synthesis and the release of a phospholipase A2 (PLA2) activity. rIL-1 beta is significantly more potent than rIL-1 alpha or rTNF in stimulating PGE2 as well as PLA2 release from mesangial cells. When given together, rTNF interacts in a synergistic fashion with rIL-1 alpha and rIL-1 beta to enhance both, PGE2 synthesis and PLA2 release. The released PLA2 has a neutral pH optimum and is calcium-dependent. Pretreatment of cells with actinomycin D or cycloheximide inhibits basal and cytokine-stimulated PGE2 and PLA2 release.  相似文献   

3.
Interleukin (IL)-1alpha and IL-1beta share low amino acid homology, but exhibit a very similar array of biological activities. The authors previously showed negative regulation of IL-1alpha-induced prostaglandin (PG) production by corticotropin releasing factor (CRF). In this study, the authors compared the effect of CRF on IL-1alpha- and IL-1beta-induced PG synthesis. IL-1alpha (100 U/ml) increased prostacyclin (PGI2) (measured as 6-keto PGF1alpha[6K]) synthesis in endothelial cells and the production of PGE2in fibroblasts. The PG response to IL-1alpha was suppressed by simultaneous exposure to CRF (2.5x10(-11)-2.5x10(-8) M) in both cell types. IL-1alpha enhanced both phospholipase A2(PLA2) and prostaglandin H synthase (PGHS) activities, and the two effects were completely abrogated by CRF. IL- 1beta (100 U/ml) was as active as IL-1alpha in triggering release of PGI2 from endothelial cells and PGE2 from fibroblasts. However, CRF (2.5x10(-11)-2.5x10(-8) M) failed to alter the IL-1beta-induced PG synthesis in both cell types. Following IL-1beta PGHS activity, and to a lesser extent PLA2 activity, were enhanced, however CRF only inhibited PGHS and not PLA2 activity. It is concluded that although IL-1alpha and IL-1beta usually produce similar biological effects, here they seem to act via different mechanisms. The different regulation of IL-1alpha and IL-1beta pro-inflammatory activities by CRF may attribute special precision and specificity to the neuroendocrine-immune control of inflammatory processes.  相似文献   

4.
The effect of human rIL-1 beta on the release of arachidonic acid (AA) and on the phospholipase A2 (PLA2) activity in guinea pig eosinophils was investigated. Stimulation of [3H]AA-labeled eosinophils with the ionophore A23187 resulted in a time and concentration-dependent release of AA in parallel to hydrolysis of endogenous phosphatidylcholine (PC). Both events were abrogated by the chelation of intracellular free calcium, but not by its depletion from the medium, suggesting that the ionophore-induced AA release involves a PLA2 activity dependent on the mobilization of intracellular calcium. Addition of human rIL-1 beta (0.01 to 100 ng/ml) to eosinophils for 15 min had no effect on the release of AA induced by the ionophore. However, prolonged incubation with human rIL-1 beta (30 to 180 min) inhibited in a concentration- and time-dependent manner the release of AA and the hydrolysis of phosphatidylcholine in ionophore-stimulated eosinophils. Our results also showed that eosinophil homogenates contain a calcium-dependent PLA2 whose activity was markedly reduced when eosinophils were pretreated with human rIL-1 beta. The inhibition was time and concentration dependent and was observed in the presence of calcium and phospholipid excess. Finally, studies with Fura-2-loaded eosinophils showed that the ionophore A23187 stimulated an increase in intracellular calcium concentration that was not altered by pretreating the eosinophils with human rIL-1 beta. These results suggest that human rIL-1 beta inhibits the release of AA by eosinophils via the inhibition of a PLA2 activity and through a calcium-independent mechanism. Inhibition by human rIL-1 beta required a prolonged incubation (30 to 180 min) and was observed after its removal from the medium, suggesting that human rIL-1 beta did not interact directly with the PLA2 itself, but with a metabolic process involved with the regulation of its activity in eosinophils.  相似文献   

5.
Sjursen W  Brekke OL  Johansen B 《Cytokine》2000,12(8):1189-1194
The involvement of cytosolic phospholipase A(2)(cPLA(2)) and secretory non-pancreatic PLA(2)(npPLA(2)) in release of arachidonic acid (AA) preceding eicosanoid formation in the human keratinocyte cell line HaCaT was examined. Interleukin 1beta (IL-1beta) and tumour necrosis factor-alpha (TNF), phorbol myristate acetate (PMA) and calcium ionophore A(23187)increased the extracellular AA release, and stimulated eicosanoid synthesis as determined by HPLC analysis. The main metabolites after stimulation with IL-1beta, PMA or A(23187)were PGE(2), an unidentified PG and LTB(4), while TNF stimulated HETE-production. Both cPLA(2)and npPLA(2)message and enzyme activity were detected in unstimulated HaCaT cells. IL-1beta, PMA and TNF increased both cPLA(2)enzyme activity and expression, but did not lead to any increase in npPLA(2)expression or activity. The selective npPLA(2)inhibitors LY311727 and 12-epi-scalaradial, or the cPLA(2)inhibitor arachidonyl trifluoro methyl ketone (AACOCF(3)) reduced IL-1beta-induced eicosanoid production in a concentration dependent manner. The results presented strongly suggest that both cPLA(2)and npPLA(2)contribute to the long-term generation of AA preceding eicosanoid production in differentiated, human keratinocytes. Inhibitors against npPLA2 or cPLA2 enzymes should be useful in treating inflammatory skin diseases, such as psoriasis.  相似文献   

6.
Interleukin 1 (IL-1) alters several potentially pathogenic endothelial cell (EC) functions. The authors report here that recombinant human IL-1 (rIL-1) alpha (0.1 to 10 ng/ml) or IL-1-beta (1 to 100 ng/ml) induce concentration- and time-dependent increases in IL-1-beta mRNA levels in EC derived from adult human saphenous vein. rIL-1 induced IL-1-alpha mRNA only in EC treated concomitantly with cycloheximide (2 micrograms/ml). IL-1-beta mRNA production began within 1 hr of exposure to rIL-1, peaked after 24 hr, and declined thereafter. Actinomycin D prevented the appearance of IL-1 mRNA in rIL-1-treated EC. rIL-1 also induced the release of biologically active IL-1 from EC, which was inhibited by cycloheximide (1 microgram/ml). When compared on the basis of their activity in the thymocyte costimulation assay, rIL-1-alpha and rIL-1-beta were equipotent as inducers of IL-1 production by EC. EC stimulated with rIL-1 produced prostaglandin E2, which inhibits IL-1 production by other cell types and also decreases the responsiveness of thymocytes to IL-1. When EC were exposed to rIL-1 in the presence of indomethacin (1 microgram/ml), which blocked prostaglandin E2 production, greater amounts of rIL-1-induced IL-1 release were detected, although the inhibitor did not affect IL-1-beta mRNA levels. IL-1-induced IL-1 production was unlikely to be caused by endotoxin contamination of tissue culture media or IL-1 preparations, because the lipopolysaccharide (LPS) antagonist polymyxin B (10 micrograms/ml) blocked LPS-induced IL-1 production by EC but did not affect IL-1 release in response to rIL-1-beta (100 ng/ml). The IL-1-inducing property of rIL-1-beta was heat-labile, whereas heated LPS stimulated EC IL-1 production. The source of IL-1 in our cultures was not monocyte/macrophages, as treatment of EC with monoclonal antibody to the monocyte antigen Mo2 under conditions that lysed adherent peripheral blood monocytes did not affect production of IL-1 by EC in response to LPS (1 microgram/ml) or rIL-1-beta (100 ng/ml). IL-1 elicits a coordinated program of altered endothelial function that increases adhesiveness for leukocytes and coagulability. IL-1-induced IL-1 gene expression in human adult EC could thus provide a positive feedback mechanism in the pathogenesis of vascular disease including atherosclerosis, vasculitis, and allograft rejection.  相似文献   

7.
Annexin I is a glucocorticoid-induced mediator with anti-inflammatory activity in animal models of arthritis. We studied the effects of a bioactive annexin I peptide, ac 2-26, dexamethasone (DEX), and interleukin-1beta (IL-1beta) on phospholipase A2 (PLA2) and cyclooxygenase (COX) activities and prostaglandin E2 (PGE2) release in cultured human fibroblast-like synoviocytes (FLS). Annexin I binding sites on human osteoarthritic (OA) FLS were detected by ligand binding flow cytometry. PLA2 activity was measured using 3H-arachidonic acid release, PGE2 release and COX activity by ELISA, and COX2 content by flow cytometry. Annexin I binding sites were present on human OA FLS. Annexin I peptide ac 2-26 exerted a significant concentration-dependent inhibition of FLS constitutive PLA2 activity, which was reversed by IL-1beta. In contrast, DEX inhibited IL-1beta-induced PLA2 activity but not constitutive activity. DEX but not annexin I peptide inhibited IL-1beta-induced PGE2 release. COX activity and COX2 expression were significantly increased by IL-1beta. Annexin I peptide demonstrated no inhibition of constitutive or IL-1beta-induced COX activity. DEX exerted a concentration-dependent inhibition of IL-1beta-induced but not constitutive COX activity. Uncoupling of inhibition of PLA2 and COX by annexin I and DEX support the hypothesis that COX is rate-limiting for PGE2 synthesis in FLS. The effect of annexin I but not DEX on constitutive PLA2 activity suggests a glucocorticoid-independent role for annexin I in autoregulation of arachidonic acid production. The lack of effect of annexin I on cytokine-induced PGE2 production suggests PGE2-independent mechanisms for the anti-inflammatory effects of annexin I in vivo.  相似文献   

8.
We previously described that recombinant interleukin-1beta (IL-1beta) induced the significant release of substance P (SP) via a cyclooxygenase (COX) pathway in primary cultured rat dorsal root ganglion (DRG) cells. In the present study, we examined the involvement of two types of phospholipase A2 (PLA2) enzymes, which lie upstream of COX in the prostanoid-generating pathway, in the IL-1beta-induced release of SP from DRG cells. The expression of type IIA secretory PLA2 (sPLA2 -IIA) mRNA was undetectable by ribonuclease protection assay in non-treated DRG cells, while in DRG cells incubated with 1 ng/mL of IL-1beta, the expression was induced in a time-dependent manner. On the other hand, type IV cytosolic PLA2 (cPLA2 ) mRNA was constitutively expressed in the non-treated DRG cells, and treatment with 1 ng/mL of IL-1beta for 3 h significantly increased the levels of cPLA2 mRNA. The IL-1beta-induced SP release was significantly inhibited by the sPLA2 inhibitor, thioetheramide phosphorylcholine (TEA-PC), and the cPLA2 inhibitor, arachidonyl trifluoromethyl ketone (AACOCF3 ). Furthermore AACOCF3 suppressed the induction of sPLA2 -IIA mRNA expression induced by IL-1beta. These observations suggested that two types of PLA2, sPLA2 -IIA and cPLA2, were involved in the IL-1beta-induced release of SP from DRG cells, and that the functional cross-talk between the two enzymes might help to control their activity in the prostanoid-generating system in DRG cells. These events might be key steps in the inflammation-induced hyperactivity in primary afferent neurons of spinal cord.  相似文献   

9.
IL-1 stimulates PGE2 production in human fibroblasts by stimulating arachidonic acid (AA) mobilization and cyclooxygenase synthesis. Cyclooxygenase is the first enzyme in the pathway that converts AA to PGE2. To examine the role of protein kinase C (PKC) in IL-1-mediated PGE2 production, we treated cells with PMA, which stimulated PGE2 production suggesting a positive role for PKC activation in the regulation of PGE2 synthesis. Therefore, we tested the effect of sphingosine, a PKC inhibitor, on IL-1-induced PGE2 production. Alone, sphingosine had little effect on PGE2 production. However, when sphingosine was added with IL-1, or IL-1 was added to sphingosine-pretreated cells, PGE2 production increased severalfold, suggesting that the inhibition of PKC results in enhanced IL-1-mediated PGE2 production; structural analogs of sphingosine did not potentiate the IL-1 effect. In cells made deficient in PKC by prolonged exposure to PMA, IL-1-mediated PGE2 production was enhanced compared with normal cells, further suggesting that functional PKC is not required for, and may down-modulate, IL-1-mediated PGE2 production. These findings also suggest that PMA and IL-1 stimulate PGE2 synthesis via fundamentally different pathways. In separate studies on the effect of IL-1 on AA mobilization, we found that IL-1 induced an increase in phospholipase A2 (PLA2) activity and that cycloheximide blocked the increase, suggesting the requirement for new protein synthesis. We also found that the PLA2 activity increased as a result of IL-1 exposure was further stimulated by sphingosine. Thus, in addition to its primary effects on the cell, which are likely mediated via PKC, we present evidence suggesting that sphingosine may also play a role in potentiating an IL-1-induced PLA2 activity, resulting in increased availability of AA for conversion to PGE2.  相似文献   

10.
Group IIa phospholipase A(2) (GIIa PLA(2)) is released by some cells in response to interleukin-1beta. The purpose of this study was to determine whether interleukin-1beta would stimulate the synthesis and release of GIIa PLA(2) from cardiomyocytes, and to define the role of p38 MAPK and cytosolic PLA(2) in the regulation of this process. Whereas GIIa PLA(2) mRNA was not identified in untreated cells, exposure to interleukin-1beta resulted in the sustained expression of GIIa PLA(2) mRNA. Interleukin-1beta also stimulated a progressive increase in cellular and extracellular GIIa PLA(2) protein levels and increased extracellular PLA(2) activity 70-fold. In addition, interleukin-1beta stimulated the p38 MAPK-dependent activation of the downstream MAPK-activated protein kinase, MAPKAP-K2. Treatment with the p38 MAPK inhibitor, SB202190, decreased interleukin-1beta stimulated MAPKAP-K2 activity, GIIa PLA(2) mRNA expression, GIIa PLA(2) protein synthesis, and the release of extracellular PLA(2) activity. Infection with an adenovirus encoding a constitutively active form of MKK6, MKK6(Glu), which selectively phosphorylates p38 MAPK, induced cellular GIIa PLA(2) protein synthesis and the release of GIIa PLA(2) and increased extracellular PLA(2) activity 3-fold. In contrast, infection with an adenovirus encoding a phosphorylation-resistant MKK6, MKK6(A), did not result in GIIa PLA(2) protein synthesis or release by unstimulated cardiomyocytes. In addition, infection with an adenovirus encoding MKK6(A) abrogated GIIa PLA(2) protein synthesis and release by interleukin-1beta-stimulated cells. These results provide direct evidence that p38 MAPK activation was necessary for interleukin-1beta-induced synthesis and release of GIIa PLA(2) by cardiomyocytes.  相似文献   

11.
Phospholipase A2 (PLA2), an enzyme which provides free arachidonic acid for the synthesis of prostaglandins (PG), has been studied in the rat uterus under various experimental conditions. Uterine PLA2 activity increased 14 fold in hypophysectomized rats implanted with Silastic capsules containing estradiol-17β as compared to those treated with oil vehicle. Dexamethasone treatment reduced the PLA2 activity induced by estrogen by 78%. Hypophysectomized animals treated with progesterone (2mg/day) for 5 days had low levels of uterine PLA2 activity but a single injection of estradiol (10ug/rat) given 24 h after the last injection of progesterone increased activity 5 fold within 12 h. Administration of the protein synthesis inhibitor cycloheximide in the rats treated with progesterone, before and after injection of estradiol, prevented the stimulating action of the estrogen on PLA2 activity. If the estrogen was given at the time of the last injection of progesterone, PLA2 activity did not increase until 24 h later and the level was much less than when progesterone was absent. The results are consistent with the view that estrogen stimulates uterine prostaglandin production because of its effect upon PLA2; this effect can be greatly reduced by a glucocorticoid. Progesterone may modulate the PLA2 stimulating effect of estrogen in order to direct the production of specific PGs by regulating the amount of arachidonic acid available for PG synthetase.  相似文献   

12.
T Kambe  M Murakami  I Kudo 《FEBS letters》1999,453(1-2):81-84
By analyzing human embryonic kidney 293 cell transfectants stably overexpressing various types of phospholipase A2 (PLA2), we have shown that polyunsaturated fatty acids (PUFAs) preferentially activate type IIA secretory PLA2 (sPLA2-IIA)-mediated arachidonic acid (AA) release from interleukin-1 (IL-1)-stimulated cells. When 293 cells prelabeled with 13H]AA were incubated with exogenous PUFAs in the presence of IL-1 and serum, there was a significant increase in [3H]AA release (in the order AA > linoleic acid > oleic acid), which was augmented markedly by sPLA2-IIA and modestly by type IV cytosolic PLA2 (cPLA2), but only minimally by type VI Ca2(+)-independent PLA2, overexpression. Transfection of cPLA2 into sPLA2-IIA-expressing cells produced a synergistic increase in IL-1-dependent [3H]AA release and subsequent prostaglandin production. Our results support the proposal that prior production of AA by cPLA2 in cytokine-stimulated cells destabilizes the cellular membranes, thereby rendering them more susceptible to subsequent hydrolysis by sPLA2-IIA.  相似文献   

13.
Addition of IL-1 (interleukin-1) to human synovial fibroblasts radiolabelled with [3H]arachidonic acid caused a linear dose-dependent increase in arachidonic acid release and a transient rise in labelled diacylglycerol. Protein kinase C activators PMA 4-phorbol 12-myristate 13-acetate and DiC8 (1,2-dioctanoyl-sn-glycerol) also increased arachidonic acid release, but the time course observed with PMA was different from that of IL-1. When cultures were treated with PMA for 16-24 h to down regulate protein kinase C, the ability of IL-1 to increase arachidonic acid release persisted to the same extent as in nontreated cultures. In contrast, PMA pretreatment prevented the eight-fold stimulation of arachidonic acid release in response to PMA observed in cultures not previously exposed to PMA. To examine the role of other kinases in IL-1 stimulated arachidonic acid release, cultures were treated with H-7 (1-(5-isoquinolinesulphonyl)-2-methylpiperazine dichloride), H-8 (N-[2-(methylamino) ethyl]-5-isoquinolinesulphonamide dichloride), HA1004 (N-(2-guanidoinoethyl)-5-isoquinolinesulphonamide hydrochloride), and staurosporine. IL-1 stimulation of arachidonic acid release was blocked by H-7, H-8 and staurosporine. H-7 was a more potent inhibitor than H-8, suggesting that cAMP dependent kinase did not mediate IL-1 action. Addition of H-7 at various times following IL-1 decreased IL-1 stimulated arachidonic acid release, suggesting that continued protein kinase activity was necessary for IL-1 action. Cycloheximide and actinomycin D inhibited the stimulation of arachidonic acid release by IL-1, PMA or DiC8. The addition of cycloheximide or actinomycin D 15-45 min after IL-1 also inhibited IL-1 stimulated arachidonic acid release, indicating that continued protein synthesis was required for IL-1 action. These results suggest that IL-1 stimulation of acylhydrolyase activity in human synovial cells occurs by a mechanism requiring continued protein synthesis and protein kinase activity and that neither protein kinase C nor cAMP dependent protein kinase is involved.  相似文献   

14.
We studied the effect of interleukin-1 alpha (IL-1) on corticotropin-releasing hormone (CRH) secretion by explanted rat hypothalami in vitro. We also assessed possible mediation of arachidonic acid metabolites on IL-1-stimulated CRH secretion, by preincubating hypothalami with the cyclooxygenase inhibitor indomethacin (INDO, 1 microM), the lipoxygenase and cyclooxygenase inhibitor eicosatetraynoic acid (ETYA, 10 microM), or the lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA, up to 30 microM). In additional experiments, prostaglandins (PG) E2 and F2 alpha were added to the cultures treated with INDO or ETYA. Finally, we investigated the effect of dexamethasone (DEX) on IL-1-stimulated CRH secretion. IL-1 stimulated immunoreactive CRH (iCRH) secretion by explanted hypothalami in a concentration-dependent fashion. Both INDO and ETYA inhibited IL-1-(10nM)-stimulated iCRH secretion, whereas NDGA did not have any effect. The addition of PGF2 alpha (10 nM) restored the secretion of iCRH inhibited by INDO. DEX treatment significantly inhibited IL-1-stimulated iCRH release. Our results suggest that the stimulatory effect of IL-1 on the hypothalamic CRH neuron is mediated by the cyclooxygenase metabolites of arachidonic acid, and, among others, by PGF2 alpha.  相似文献   

15.
Injection of human rIL-1 alpha in intact normal mice has positive and negative effects on myelopoiesis. Within 6 h postinjection, peripheral neutrophilia can be demonstrated. However, bone marrow and spleen cells capable of inhibiting CFU-granulocyte macrophage proliferation are detected between 6 and 48 h postinjection. These myelopoietic suppressor cells belong to the monocytic lineage and are identical to inhibitory cells induced by PGE2. Treatment of mice with indomethacin, a PG synthesis inhibitor, completely blocked the generation of IL-1-alpha-induced myelopoietic suppressor cells, and significantly enhanced femoral and splenic CFU-GM proliferation after a single injection of 0.4 microgram/mouse IL-1. The peripheral blood neutrophilia observed within 6 h after IL-1 injection was delayed to 18 to 24 h postinjection in indomethacin-pretreated mice. In mice treated with four consecutive daily injections of 0.4 microgram IL-1, a sustained peripheral neutrophilia was observed. IL-1 had little effect on femoral CFU-GM in these animals, however, splenic CFU-GM was increased 7- to 10-fold by 4 to 7 days postinjection. In IL-1 plus indomethacin-treated mice, sustained peripheral neutrophilia was observed although to a lesser degree than with IL-1 alone. Marrow CFU-GM were relatively unaffected, however, splenic CFU-GM were increased by 27-fold. These results indicate that the in vivo administration of IL-1 results in neutrophilia and generation of myelopoietic suppressive effects, mediated by cyclo-oxygenase pathway products. Blockade of PG synthesis by using the cyclo-oxygenase inhibitor indomethacin abrogates the myelopoietic suppressive effects associated with IL-1 administration and optimizes its myelopoietic stimulatory capacity. The inclusion of a cyclo-oxygenase inhibitor may have significant relevance to the clinical use of IL-1.  相似文献   

16.
Previous studies suggested a role for calcium in CYP2E1-dependent toxicity. The possible role of phospholipase A2 (PLA2) activation in this toxicity was investigated. HepG2 cells that overexpress CYP2E1 (E47 cells) exposed to arachidonic acid (AA) +Fe-NTA showed higher toxicity than control HepG2 cells not expressing CYP2E1 (C34 cells). This toxicity was inhibited by the PLA2 inhibitors aristolochic acid, quinacrine, and PTK. PLA2 activity assessed by release of preloaded [3H]AA after treatment with AA+Fe was higher in the CYP2E1 expressing HepG2 cells. This [3H]AA release was inhibited by PLA2 inhibitors, alpha-tocopherol, and by depleting Ca2+ from the cells (intracellular + extracellular sources), but not by removal of extracellular calcium alone. Toxicity was preceded by an increase in intracellular calcium caused by influx from the extracellular space, and this was prevented by PLA2 inhibitors. PLA2 inhibitors also blocked mitochondrial damage in the CYP2E1-expressing HepG2 cells exposed to AA+Fe. Ca2+ depletion and removal of extracellular calcium inhibited toxicity at early time periods, although a delayed toxicity was evident at later times in Ca2+-free medium. This later toxicity was also inhibited by PLA2 inhibitors. Analogous to PLA2 activity, Ca2+ depletion but not removal of extracellular calcium alone prevented the activation of calpain activity by AA+Fe. These results suggest that release of stored calcium by AA+Fe, induced by lipid peroxidation, can initially activate calpain and PLA2 activity, that PLA2 activation is critical for a subsequent increased influx of extracellular Ca2+, and that the combination of increased PLA2 and calpain activity, increased calcium and oxidative stress cause mitochondrial damage, that ultimately produces the rapid toxicity of AA+Fe in CYP2E1-expressing HepG2 cells.  相似文献   

17.
IL-22 is one of several cytokines with limited homology to IL-10. However, the biological activities of IL-22 are mostly unknown. The purpose of this study was to evaluate the effect of IL-22 on rat experimental autoimmune myocarditis (EAM) and elucidate an aspect of the biological activities of IL-22. Rats were immunized on day 0; IL-22-Ig-treated rats were injected with pCAGGS-IL-22-Ig and control rats with pCAGGS-Ig using hydrodynamics-based gene delivery on day 1 or day 6. IL-22-Ig gene therapy administered on day 1 or day 6 after immunization was effective in controlling EAM as monitored by the heart weight to body weight ratio, and the myocarditis area in rats was sacrificed on day 17. Examination of the expression of IL-22-related genes in purified cells from EAM hearts suggested that IL-22-Ig acting target cells were noncardiomyocytic (NC) noninflammatory cells such as fibroblasts, smooth muscle cells, and endothelial cells. Therefore, we examined the effect of rIL-22 or serum containing IL-22-Ig on the expression of immune-relevant genes in IL-1-stimulated NC cells cultured from EAM hearts. Results showed that the expression of immunologic molecules (PGE synthase, cyclooxygenase-2, MIP-2, MCP-1, IL-6, and cytokine-induced neutrophil chemoattractant-2) in IL-1-stimulated NC cells was significantly decreased by rIL-22 or serum containing IL-22-Ig. EAM was suppressed by hydrodynamics-based delivery of plasmid DNA encoding IL-22-Ig, and the reason for this effectiveness may be that IL-22 suppressed gene expression of PG synthases, IL-6, and chemokines in activated NC noninflammatory cells.  相似文献   

18.
In this study we have used a new method for human recombinant IL-1 beta (rIL-1 beta) purification and investigated its immunostimulatory biological activity. The IL-1 beta gene was cloned using a novel mRNA preparation from activated human blood monocytes. The purification protocol consists of extraction and two chromatographic steps using the new Soloza cation exchange resin. The purified protein was characterized electrophoretically, by amino acid analysis and reverse phase chromatography. The protein migrated on SDS-PAGE with a molecular weight of 18.200 but demonstrated the minor presence of aggregates (dimers and trimers). Specific activity of purified rIL-1 beta in comitogenic assay on mouse thymocytes was 10(8) U/mg protein. rIL-1 beta increased in a dose dependent manner proliferation of Con A-stimulated murine thymocytes, splenocytes, PHA-stimulated human peripheral blood lymphocytes and transformed B-cell lines. Comitogenic activity depended on the degree of lymphocyte preactivation and was similar to that of natural human IL-1 beta. rIL-1 beta enhanced IL-2 production by murine spleen cells and EL-4 cell line and IL-2 receptor expression by human peripheral blood mononuclear cells. It induced PGE2 release from human blood monocytes but had no effect on human neutrophil chemotaxis, phagocytosis and respiratory burst.  相似文献   

19.
The aim of this study was to characterize the mediators released by mast cells responsible for IL-8-induced neutrophil migration. It was observed that IL-8 induces a dose-dependent neutrophil migration into peritoneal cavity of rats, but not into air-pouch cavity in which resident mast cells are not present. The transference of peritoneal mast cells to the air-pouch renders this cavity responsive to IL-8. The neutrophil migration induced by IL-8 into the peritoneal cavity was not observed when the peritoneal-resident mast cells were depleted by compound 48/80 or distilled water treatment. Confirming the importance of mast cells, IL-8-stimulated mast cells supernatant induced significant neutrophil migration when injected into peritoneal and air-pouch cavities. The IL-8-induced neutrophil migration was observed not to be dependent on LTB(4), prostaglandins or TNF-alpha, since MK886, indomethacin or thalidomide were unable to block the IL-8-induced neutrophil accumulation 'in vivo' or the release of neutrophil chemotactic factor "in vitro" by IL-8-stimulated mast cells. However, dexamethasone, an inhibitor of the synthesis of pro-inflammatory cytokines, blocked the neutrophil migration induced by IL-8 "in vivo" and also inhibited the release of the neutrophil chemotactic factor by IL-8-stimulated mast cells. Moreover, the incubation of IL-8-stimulated mast cells supernatant with antibody against cytokine-induced neutrophil chemoattractant 1 (CINC-1), but not against TNF-alpha or IL-1beta, inhibited its neutrophil chemotactic activity. Furthermore, we found a significant amount of CINC-1 in this supernatant. In conclusion, we demonstrated that the neutrophil migration induced by IL-8 is dependent on CINC-1 release from mast cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号