首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A gene coding for xylanase activity in the ruminal bacterial strain 23, the type strain of Bacteroides ruminicola, was cloned into Escherichia coli JM83 by using plasmid pUC18. AB. ruminicola 23 genomic library was prepared in E. coli by using BamHI-digested DNA, and transformants were screened for xylanase activity on the basis of clearing areas around colonies grown on Remazol brilliant blue R-xylan plates. Six clones were identified as being xylanase positive, and all six contained the same 5.7-kilobase genomic insert. The gene was reduced to a 2.7-kilobase DNA fragment. Xylanase activity produced by the E. coli clone was found to be greater than that produced by the original B. ruminicola strain. Southern hybridization analysis of genomic DNA from the related B. ruminicola strains, D31d and H15a, by using the strain 23 xylanase gene demonstrated one hybridizing band in each DNA.  相似文献   

2.
A cloned xylanase gene from the ruminal bacterium Bacteroides ruminicola 23 was transferred by conjugation into the colonic species Bacteroides fragilis and Bacteroides uniformis by using the Escherichia coli-Bacteroides shuttle vector pVAL-1. The cloned gene was expressed in both species, and xylanase specific activity in crude extracts was found to be at least 1400-fold greater than that found in the B. ruminicola strain. Analysis of crude extract proteins from the recombinant B. fragilis by SDS-PAGE demonstrated a new 60,000 molecular weight protein. The xylanase activity expressed in both E. coli and B. fragilis was capable of degrading xylan to xylooligosaccharides in vitro. This is the first demonstration that colonic Bacteroides species can express a gene from a ruminal Bacteroides species.  相似文献   

3.
A gene coding for xylanase synthesis in Bacteroides succinogenes was isolated by cloning, with Escherichia coli HB101 as the host. After partial digestion of B. succinogenes DNA with Sau3A, fragments were ligated into the BamHI site of pBR322 and transformed into E. coli HB101. Of 14,000 colonies screened, 4 produced clear halos on Remazol brilliant blue-xylan agar. Plasmids from two stable clones recovered exhibited identical restriction enzyme patterns, with the same 9.4-kilobase-pair (kbp) insert. The plasmid was designated pBX1. After subcloning of restriction enzyme fragments, a 3-kbp fragment was found to code for xylanase activity in either orientation when inserted into pUC18 and pUC19. The original clone possessed approximately 10-fold higher xylanase activity than did clones harboring the 3-kbp insert in pUC18, pUC19, or pBR322. The enzyme was partially secreted into the periplasmic space of E. coli. The periplasmic enzyme of the BX1 clone had 2% of the activity on carboxymethyl cellulose and less than 0.2% of the activity on p-nitrophenyl xyloside and a range of other substrates that it exhibited on xylan. The xylanase gene was not subject to catabolite repression by glucose or induction by either xylan or xylose. The xylanase activity migrated as a single broad band on nondenaturing polyacrylamide gels. The Km of the pBX1-encoded enzyme was 0.22% (wt/vol) of xylan, which was similar to that for the xylanase activity in an extracellular enzyme preparation from B. succinogenes. Based on these data it appears that the xylanase gene expressed in E. coli is fully functional and codes for an enzyme with properties similar to the B. succinogenes enzyme(s).  相似文献   

4.
H J Goodman  J R Parker  J A Southern  D R Woods 《Gene》1987,58(2-3):265-271
The recombinant plasmid pHG100, containing a 5.2-kb DNA fragment from Bacteroides fragilis, complemented defects in homologous recombination, DNA repair and prophage induction to various levels in an Escherichia coli recA mutant strain. There was no DNA homology between the cloned B. fragilis recA-like gene and E. coli chromosomal DNA. pHG100 produced two proteins with Mr of approx. 39,000 and 37,000 which cross-reacted with antibodies raised against E. coli RecA protein. The production of these proteins was not increased after UV induction. The cloned B. fragilis recA-like gene product did not enhance the production of native but defective E. coli RecA protein after UV irradiation.  相似文献   

5.
Zhou C  Bai J  Deng S  Wang J  Zhu J  Wu M  Wang W 《Bioresource technology》2008,99(4):831-838
The complete gene xyn// that encodes endo-1,4-beta-xylanase secreted by Aspergillus usamii E001 was cloned and sequenced. The coding region of the gene is separated by only one intron. It encodes 184 amino acid residues of a protein with a calculated molecular weight of 19.8kDa plus a signal peptide of 27 amino acids. The amino acid sequence of the xyn// gene has higher similarity with those of family 11 of glycosyl hydrolases reported from other microorganisms. The mature peptide encoding cDNA was subcloned into pET-28a(+) expression vector. The recombinant plasmid was expressed in Escherichia coli BL21-CodonPlus (DE3)-RIL, and xylanase activity was measured. The expressed fusion protein was analyzed by SDS-PAGE and a new specific band with molecular weight of about 20kDa was found when induced by IPTG. Enzyme activity assay verified the recombinant protein as a xylanase. A maximum activity of 49.6Umg(-1) was obtained from cellular extract of E. coli BL21-CodonPlus (DE3)-RIL harboring pET-28a-xyn//. The xylanase had optimal activity at pH 4.6 and 50 degrees C. This is the first report on the cloning of a xylanase gene from A. usamii.  相似文献   

6.
A gene coding for xylanase synthesis in Bacteroides succinogenes was isolated by cloning, with Escherichia coli HB101 as the host. After partial digestion of B. succinogenes DNA with Sau3A, fragments were ligated into the BamHI site of pBR322 and transformed into E. coli HB101. Of 14,000 colonies screened, 4 produced clear halos on Remazol brilliant blue-xylan agar. Plasmids from two stable clones recovered exhibited identical restriction enzyme patterns, with the same 9.4-kilobase-pair (kbp) insert. The plasmid was designated pBX1. After subcloning of restriction enzyme fragments, a 3-kbp fragment was found to code for xylanase activity in either orientation when inserted into pUC18 and pUC19. The original clone possessed approximately 10-fold higher xylanase activity than did clones harboring the 3-kbp insert in pUC18, pUC19, or pBR322. The enzyme was partially secreted into the periplasmic space of E. coli. The periplasmic enzyme of the BX1 clone had 2% of the activity on carboxymethyl cellulose and less than 0.2% of the activity on p-nitrophenyl xyloside and a range of other substrates that it exhibited on xylan. The xylanase gene was not subject to catabolite repression by glucose or induction by either xylan or xylose. The xylanase activity migrated as a single broad band on nondenaturing polyacrylamide gels. The Km of the pBX1-encoded enzyme was 0.22% (wt/vol) of xylan, which was similar to that for the xylanase activity in an extracellular enzyme preparation from B. succinogenes. Based on these data it appears that the xylanase gene expressed in E. coli is fully functional and codes for an enzyme with properties similar to the B. succinogenes enzyme(s).  相似文献   

7.
8.
A genomic library consisting of 4- to 7-kb EcoRI DNA fragments from Fibrobacter succinogenes 135 was constructed using a phage vector, lambda gtWES lambda B, and Escherichia coli ED8654 as the host bacterium. Two positive plaques, designated lambda FSX101 and lambda FSX102, were identified. The inserts were 10.5 and 9.8 kb, respectively. A 2.3-kb EcoRI fragment that was subcloned from lambda FSX101 into pBR322 also showed xylanase activity. Southern blot analysis showed that the cloned EcoRI fragment containing the xylanase gene had originated from F. succinogenes 135. The cloned endo-(1,4)-beta-D-xylanase gene (pFSX02) was expressed constitutively in E. coli HB101 when grown on LB and on M9 medium containing either glucose or glycerol as the carbon source. Most of the beta-D-xylanase activity was located in the periplasmic space. Zymogram activity stains of nondenaturing polyacrylamide gels and isoelectric focusing gels showed that several xylanase isoenzymes were present in the periplasmic fraction of the E. coli clone FSX02 and they probably were due to posttranslational modification of a single gene product. Comparison of the FSX02 xylanase and the xylanase from the extracellular culture fluids of F. succinogenes 135 and S85 for their ability to degrade oat spelt xylan showed that, for equal units of beta-D-xylanase activity, hydrolysis by the cloned gene product was more complete. However, unlike the unfractionated mixture of xylanases from F. succinogenes 135 and S85, the enzyme from E. coli FSX02 was unable to release arabinose from oat spelt xylan.  相似文献   

9.
Summary A xylanase gene from Clostridium acetobutylicum P262 was cloned on a recombinant plasmid pHZ300 which enabled Escherichia coli HB101 cells to produce intracellular xylanase activity. The xylanase gene was located on a 2 kb DNA fragment. The cloned xylanase had an apparent M r of approximately 28 000 and an isoelectric point of approximately 10. Optimum xylanase activity was obtained at pH 6.0 at 37–43° C. Comparison with a xylanase partially purified from the culture medium of C. acetobutylicum P262 showed that the enzymes had similar characteristics and western blot analysis showed cross-reactivity between antibodies raised against the purified cloned enzyme and a polypeptide of the same M r from C. acetobutylicum P262.  相似文献   

10.
AIMS: The main goal of this study was to characterize the xylanase (xynA) gene from Pichia stipitis NRRL Y-11543. METHODS AND RESULTS: The xylanase gene was cloned into pUC19 in Escherichia coli DH5alphaF' and selected by growth on RBB-xylan. All functional clones contained a recombinant plasmid with an insert of 2.4 kbp, as determined by restriction mapping. The nucleotide sequence of the P. stipitis xylanase gene consisted of 1146 bp and encoded a protein of 381 amino acids with a molecular weight of 43 649 Da. The sequence contained a putative 20-amino acid N-terminal signal sequence and four N-linked glycosylation sites. The Km values for non-glycosylated and glycosylated xylanases were 1.4 mg ml-1 and 4.2 mg ml-1, respectively, and Vmax values were 0.8 and 0.082 micromol min-1 mg-1 protein, respectively. CONCLUSION: Xylanase, a rarely found enzyme in yeast species, has been characterized in detail. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this study can be used to develop better xylanase-utilizing yeast strains.  相似文献   

11.
The xylanase gene from the ruminal bacterium Bacteroides ruminicola 23 is highly expressed in colonic Bacteroides species when carried on plasmid pVAL-RX. In order to stabilize xylanase expression in the absence of antibiotic selection, the xylanase gene was introduced into the chromosome of Bacteroides thetaiotaomicron 5482 by using suicide vector pVAL-7. Xylanase activity in the resulting strain, B. thetaiotaomicron BTX, was about 30% of that observed in B. thetaiotaomicron 5482 containing the xylanase gene on pVAL-RX. The data obtained from continuous culture experiments using antibiotic-free medium showed that expression of xylanase activity in strain BTX was extremely stable, with no demonstrated loss of the inserted xylanase gene over 60 generations, with dilution rates from 0.42 to 0.03 h-1. In contrast, the plasmid-borne xylanase gene was almost completely lost by 60 generations in the absence of antibiotic selection. Incubation of strain BTX with oatspelt xylan resulted in the degradation of more than 40% of the xylan to soluble xylooligomers. The stability of xylanase expression in B. thetaiotaomicron BTX suggests that this microorganism might be suitable for introduction into the rumen and increased xylan degradation.  相似文献   

12.
A genomic bank was constructed in Escherichia coli HB101, consisting of DNA fragments from Bacteroides thetaiotaomicron strain 489 inserted within the vector pBR322. By screening on complex medium containing blue dextran, 10 stable dextranase-positive (Dex+) clones were isolated. Seven groups of Dex+ inserts were identified on the basis of their restriction maps and hybridization responses. Dextanase activity of the recombinant clones was weak, and was revealed on the selection medium after 15 days. Subcloning of a Sau3AI partially digested 3.2-kb insert in the expression vector pDR720 greatly enhanced dextranse activity on blue dextran plates in one clone, but the delay remained unaltered. This suggested that the enzyme was released by cell lysis. Expression of this 0.7-kb subcloned insert was dependent on the promoter region of tryptophan operon carried by pDR720.  相似文献   

13.
The xylanase gene from the ruminal bacterium Bacteroides ruminicola 23 is highly expressed in colonic Bacteroides species when carried on plasmid pVAL-RX. In order to stabilize xylanase expression in the absence of antibiotic selection, the xylanase gene was introduced into the chromosome of Bacteroides thetaiotaomicron 5482 by using suicide vector pVAL-7. Xylanase activity in the resulting strain, B. thetaiotaomicron BTX, was about 30% of that observed in B. thetaiotaomicron 5482 containing the xylanase gene on pVAL-RX. The data obtained from continuous culture experiments using antibiotic-free medium showed that expression of xylanase activity in strain BTX was extremely stable, with no demonstrated loss of the inserted xylanase gene over 60 generations, with dilution rates from 0.42 to 0.03 h-1. In contrast, the plasmid-borne xylanase gene was almost completely lost by 60 generations in the absence of antibiotic selection. Incubation of strain BTX with oatspelt xylan resulted in the degradation of more than 40% of the xylan to soluble xylooligomers. The stability of xylanase expression in B. thetaiotaomicron BTX suggests that this microorganism might be suitable for introduction into the rumen and increased xylan degradation.  相似文献   

14.
Thermomonospora fusca chromosomal DNA was partially digested with EcoRI to obtain 4- to 14-kilobase fragments, which were used to construct a library of recombinant phage by ligation with EcoRI arms of lambda gtWES. lambda B. A recombinant phage coding for xylanase activity which contained a 14-kilobase insert was identified. The xylanase gene was localized to a 2.1-kilobase SalI fragment of the EcoRI insert by subcloning onto pBR322 and derivatives of pBR322 that can also replicate in Streptomyces lividans. The xylanase activity produced by S. lividans transformants was 10- to 20-fold higher than that produced by Escherichia coli transformants but only one-fourth the level produced by induced T. fusca. A 30-kilodalton peptide with activity against both Remazol brilliant blue xylan and xylan was produced in S. lividans transformants that carried the 2.1-kilobase SalI fragment of T. fusca DNA and was not produced by control transformants. T. fusca cultures were found to contain a xylanase of a similar size that was induced by growth on xylan or Solka Floc. Antiserum directed against supernatant proteins isolated from a Solka Floc-grown T. fusca culture inhibited the xylanase activity of S. lividans transformants. The cloned T. fusca xylanase gene was expressed at about the same level in S. lividans grown in minimal medium containing either glucose, cellobiose, or xylan. The xylanase bound to and hydrolyzed insoluble xylan. The cloned xylanase appeared to be the same as the major protein in xylan-induced T. fusca culture supernatants, which also contained at least three additional minor proteins with xylanase activity and having apparent molecular masses of 43, 23, and 20 kilodaltons.  相似文献   

15.
Bacillus subtilis strain B10 was isolated for degumming of ramie blast fibers, and a fragment of 642-bp was amplified from chromosomal DNA by using primers directed against the sequence of Bacillus subtilis xylanase gene given in GenBank. The positive clones were screened on the selected LB agar plates supplemented with xylan by Congo-red staining method. The recombinant plasmid from one positive clone was used for further analysis and DNA sequencing. The gene sequence is different from the reported xylanase gene sequence in sites of two base pairs. The recombinant plasmid was expressed in Escherichia coli, and xylanase activity was measured. The xylanase distribution in extracellular, intracellular and periplasmic fractions were about 22.4%, 28.0% and 49.6%, respectively. The xylanase had optimal activity at pH 6.0 and 50 degrees C.  相似文献   

16.
A complete genomic library of Chainia was constructed in coliphage lambda vector gt10 and was screened for the xylanase gene using an 18-mer mixed oligonucleotide probe corresponding to a six-amino acid sequence of low molecular mass Chainia xylanase. Inserts from 11 putative clones, showing hybridization with the oligonucleotide probe at medium stringency, were subcloned in pUC8 and screened for xylanase gene expression using anti-xylanase antibodies. The restriction map of the insert (1.4 kb) from one of the four immunopositive clones (PVX8) showing detectable xylanase activity was constructed. The xylanase activity of PVX8 was not induced by IPTG or xylan. Reorientation of the insert by directional cloning into pUC9 had no effect on the xylanase activity suggesting that an indigenous promoter from Chainia is responsible for the xylanase activity.  相似文献   

17.
A genomic library of Bacillus lyticus was constructed in lambda GEM 11 vector and screened for the xylanase gene using Congo red plate assay. A 16-kb fragment containing the xylanase gene was obtained which was further subcloned using Mbo I partial digestion in an E. coli pUC 19 vector. A 1.3-kb sub-fragment was obtained which coded for a xylanase gene of Mr 23,650 Da. This fragment was sequenced and the homology was checked with known xylanases. The maximum homology was 97%, which was obtained with an endo xylanase gene from Bacillus species at the DNA level, while the translated sequence showed only one amino acid change from alanine to serine at position number 102. Expression was checked in E. coli, using the native promoter, and an extracellular activity of 5.25 U/mL was obtained. Cloning of the gene was done in Bacillus subtilis using a shuttle vector pHB 201, which resulted in increasing the basal level xylanase activity from 14.02 to 22.01 U/mL.  相似文献   

18.
19.
20.
Summary A library containing more than 80% of the Vibrio cholerae genome was constructed by cloning BamH1 restriction fragments into pBR322. Using interspecific complementation of an Escherichia coli recA mutant with plasmids containing the gene bank of V. cholerae, a recA-like gene was identified. The recombinant plasmid, designated as pDP145, contained a 1.45 kb segment of V. cholerae DNA which codes for a protein of molecular weight 39,000. The product of this gene confers methyl methane sulphonate resistance on the E. coli recA mutant, suppresses its ultraviolet (UV) light sensitive phenotype and has proteolytic activity on the phage repressor. Induction of a 39,000 dalton protein in UV-irradiated V. cholerae cells was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号