首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The therapeutic efficacy of tamoxifen (TAM) in cancer therapy is thought to arise primarily from its ability to compete with estrogens for binding to the estrogen receptor (ER). We show that TAM and its active metabolite, 4-hydroxytamoxifen (OHT), can actively induce programmed cell death through distinct ER-dependent and ER-independent pathways. The ER-independent pathway is activated by 10-20 microm TAM and OHT and by 10-20 microm 17beta-estradiol and raloxifene, and occurs in ER-negative cells. The ER dependence of a second pathway, caused by submicromolar concentrations of TAM and OHT, was demonstrated by the ability of the ER ligands 17beta-estradiol, raloxifene, and ICI 182,780 to effectively block the cell death-inducing effects of TAM and OHT. Because the p38-specific inhibitor SB203580 blocks OHT.ER-induced cell death, stress kinase pathways are likely involved. ER-independent cell death triggers classic caspase-dependent apoptosis. However, although OHT.ER triggers some hallmarks of apoptosis, including Bax translocation and cytochrome c release, the absence of poly(ADP-ribose) polymerase cleavage or DNA laddering indicates that the death pathway involved is caspase-independent. The OHT.ER-dependent cell death pathway appears to diverge from classical apoptosis at the level of caspase 9 activation. The ability to promote ER-dependent programmed cell death represents a novel activity of TAM and OHT.  相似文献   

2.
Although compelling data have demonstrated the effectiveness of estrogen replacement therapy for the treatment of accelerated bone loss in postmenopausal osteoporosis and ovariectomized animals, the mechanisms by which estrogens reduce bone resorption remain to be elucidated. To address this issue, in the present study we investigated whether estrogens were able to induce programmed cell death or apoptosis in osteoclast precursors. To this purpose, a preosteoclastic cell line (FLG 29.1) was cultured in the absence or presence of nanomolar concentrations of 17beta-estradiol (17betaE2). Using time-lapse videomicroscopy, it was shown that 17betaE2 induced FLG 29.1 cell apoptosis in a dose- and time-dependent manner. Furthermore, a significant increase in the activity of caspase 3 enzyme and in the number of nuclei undergoing DNA fragmentation was observed in FLG 29.1 cells treated with 17betaE2 compared to untreated cells. Finally, transmission electron microscopy of the treated cells showed typical apoptotic morphology. These data indicate that 17betaE2 is able to promote in vitro apoptosis in preosteoclastic cells and suggest that estrogenic molecules may exert in vivo a direct role in negatively modulating the pool of undifferentiated bone marrow cells capable ultimately of maturing into osteoclasts.  相似文献   

3.
Role of apoptosis in cardiovascular disease   总被引:2,自引:0,他引:2  
Apoptosis plays a key role in the pathogenesis in a variety of cardiovascular diseases due to loss of terminally differentiated cardiac myocytes. Cardiac myocytes undergoing apoptosis have been identified in tissue samples from patients suffering from myocardial infarction, diabetic cardiomyopathy, and end-stage congestive heart failure. Apoptosis is a highly regulated program of cell death and can be mediated by death receptors in the plasma membrane, as well as the mitochondria and the endoplasmic reticulum. The cell death program is activated in cardiac myocytes by various stressors including cytokines, increased oxidative stress and DNA damage. Many studies have demonstrated that inhibition of apoptosis is cardioprotective and can prevent the development of heart failure. This review provides a current overview of the evidence of apoptosis in cardiovascular diseases and discusses the molecular pathways involved in cardiac myocyte apoptosis.  相似文献   

4.
5.
Apoptosis plays a significant role in maladaptive remodeling and ventricular dysfunction following ischemia-reperfusion injury. There is a critical need for novel approaches to inhibit apoptotic cell death following reperfusion, as this loss of cardiac myocytes can progressively lead to heart failure. We investigated the ability and signaling mechanisms of a high-molecular-weight polyethylene glycol-based copolymer, PEG 15-20, to protect cardiac myocytes from hypoxia-reoxygenation (H-R)-induced cell death and its efficacy in preserving ventricular function following extended hypothermic ischemia and warm reperfusion as relevant to cardiac transplantation. Pretreatment of neonatal rat ventricular myocytes with a 5% PEG solution led to a threefold decline in apoptosis after H-R relative to untreated controls. There was a similar decline in caspase-3 activity in conjunction with inhibition of cytochrome c release from the inner mitochondrial membrane. Treatment with PEG also reduced reactive oxygen species production after H-R, and sarcolemmal lipid-raft architecture was preserved, consistent with membrane stabilization. Cell survival signaling was upregulated after H-R with PEG, as demonstrated by increased phosphorylation of Akt, GSK-3β, and ERK1/2. There was also maintenance of cardiac myocyte β-adrenergic signaling, which is critical for myocardial function. PEG 15-20 was very effective in preserving left ventricular function following prolonged hypothermic ischemia and warm reperfusion. PEG 15-20 has a potent protective antiapoptotic effect in cardiac myocytes exposed to H-R injury and may represent a novel therapeutic strategy to decrease myocardial cell death and ventricular dysfunction at the time of reperfusion during acute coronary syndrome or following prolonged donor heart preservation.  相似文献   

6.
We have previously shown that estrogen effects in the heart include direct hormone effects on the myocardium. In a recent study we found that one beneficial effect of estradiol on the myocardium is the inhibition of apoptosis in cardiac myocytes. This effect was associated with a reduction of NF-kappaB activity. In the present study we have analyzed the functional mechanism of NF-kappaB inhibition in the myocardium by estrogen receptors-alpha and -beta. Despite the previous finding that 17-beta-estradiol (10 nM) inhibited the staurosporine-induced binding of p65/p50 NF-kappaB complexes to their cognate DNA elements in cultured rat cardiac myocytes, myocyte extracts showed no change in expression or cellular localization of p65, p50, and IkappaB upon staurosporine or estradiol treatment. Addition of either estrogen receptor-alpha or estrogen receptor-beta as recombinant protein was sufficient to inhibit staurosporine-dependent p65/p50 DNA binding in cardiac myocytes. 17-beta-Estradiol inhibits staurosporine-induced p65/p50 DNA binding associated with apoptotic cell death of cardiac myocytes via estrogen receptors-alpha and -beta. This is not associated with changes in p65, p50 and IkappaB expression or subcellular localization. Thus, inhibition of NF-kappaB activity by estrogenic compounds might inhibit NF-kappaB dependent gene expression such as pro-inflammatory cytokines in the myocardium.  相似文献   

7.
Apoptosis, or programmed cell death, is an essential physiological process for proper embryogenesis as well as for homeostasis during aging. In addition, apoptosis is one of the major mechanisms causing cell loss in pathophysiological conditions such as heart failure. Thus, inhibition of apoptosis is an important approach for preventive and therapeutic strategies. Here we show that the histone 3 lysine 4- and lysine 36-specific methyltransferase Smyd2 acts as an endogenous antagonistic player of p53-dependent cardiomyocyte apoptosis. Smyd2 protein levels were significantly decreased in cardiomyocytes upon cobalt chloride-induced apoptosis or myocardial infarction, while p53 expression was enhanced. siRNA-mediated knockdown of Smyd2 in cultured cardiomyocytes further enhanced cobalt chloride-induced cardiomyocyte apoptosis. In contrast, Smyd2 overexpression resulted in marked methylation of p53 and prevented its accumulation as well as apoptotic cell death in an Hsp90-independent manner. Moreover, overexpression, of Smyd2, but not Smyd2Y240F lacking a methyl transferase activity, significantly rescued CoCl2-induced apoptosis in H9c2 cardioblasts. Finally, Smyd2 cardiomyocyte-specific deletion in vivo promoted apoptotic cell death upon myocardial infarction, which correlated with enhanced expression of p53 and pro-apoptotic Bax. Collectively, our data indicate Smyd2 as a cardioprotective protein by methylating p53.  相似文献   

8.
Nitric oxide and promotion of cardiac myocyte apoptosis   总被引:1,自引:0,他引:1  
The removal of damaged, superfluous or energy-starved cells is essential for biological homeostasis, and occurs in every tissue type. Programmed cell death occurs through several closely regulated signal pathways, including apoptosis, in which cell components are broken down and packaged into small membrane-bound fragments that are then removed by neighbouring cells or phagocytes. This process is activated in the cardiac myocyte in response to a variety of stresses, including oxidative and nitrosative stress, and involves mitochondria-derived signals. Loss of cardiac myocytes through apoptosis has been shown to induce cardiomyopathy in a variety of gene-targeted animal models. Because cardiac myocytes have strictly limited ability to regenerate, sustained programmed cell death is likely to contribute to the development and progression of heart failure in a variety of myocardial diseases. At the same time, the cardiac myocyte possesses a number of mechanisms for defence against short-term haemodynamic and oxidative stresses. Our laboratory has recently examined the role of nitric oxide (NO) as a regulator of the programmed death of cardiac myocytes, and the potential contribution of NO and NO-dependent signalling to the loss of myocytes in heart failure. We will review the role of c-Jun N-terminal kinase in response to oxidative and nitrosative stress, and summarise evidence for its role as a cytoprotective mechanism. We will also review evidence implicating NO in the pathophysiology of heart failure, in the context of the extensive and sometimes contradictory body of research on NO and cell survival.  相似文献   

9.
Necrosis is an ancient topic which gains new attraction in the research area these years. There is no doubt that some necrosis can be regulated by genetic manipulation other than an accidental cell death resulting from physical or chemical stimuli. Recent advances in the molecular mechanism underlying the programmed necrosis show a fine regulation network which indicates new therapy targets in human diseases. Heart diseases seriously endanger our health and have high fatality rates in the patients. Cell death of cardiac myocytes is believed to be critical in the pathogenesis of heart diseases. Although necrosis is likely to play a more important role in cardiac cell death than apoptosis, apoptosis has been paid much attention in the past 30 years because it used to be considered as the only form of programmed cell death. However, recent findings of programmed necrosis and the related signalling pathways have broadened our horizon in the field of programmed cell death and promote new pharmacological application in the treatment of heart diseases. In this review, we summarize the advanced progress in these signalling pathways and discuss the pathos‐physiological relevance and therapeutic implication of targeting necrosis in heart diseases treatment.  相似文献   

10.
Pericontusional zone (PCZ) of traumatic cerebral contusion is a target of pharmacological intervention. It is well studied that 17beta-estradiol has a protective role in ischemic brain injury, but its role in brain protection of traumatic brain damage deserves further investigation, especially in pericontusional zone. Here we show that 17beta-estradiol enhances the protein expression and mRNA induction of estrogen alpha receptor (ERalpha) and prevents from programmed cell death in cortical pericontusional zone. ERalpha specific antagonist blocks this protective effect of 17beta-estradiol. Caspase-3 activation occurs in cortical pericontusional zone of the oil-treated injured rat brain and its activation is inhibited by 17beta-estradiol treatment. Additionally, ERalpha specific antagonist reverses this inhibition. Pan-caspase inhibitor also protect cortical pericontusional zone from programmed cell death. Our present study indicates 17beta-estradiol protects from programmed cell death in cortical pericontusional zone via enhancement of ERalpha and decrease of caspase-3 activation.  相似文献   

11.
12.
Nitric oxide and promotion of cardiac myocyte apoptosis   总被引:1,自引:0,他引:1  
The removal of damaged, superfluous or energy-starved cells is essential for biological homeostasis, and occurs in every tissue type. Programmed cell death occurs through several closely regulated signal pathways, including apoptosis, in which cell components are broken down and packaged into small membrane-bound fragments that are then removed by neighbouring cells or phagocytes. This process is activated in the cardiac myocyte in response to a variety of stresses, including oxidative and nitrosative stress, and involves mitochondria-derived signals. Loss of cardiac myocytes through apoptosis has been shown to induce cardiomyopathy in a variety of gene-targeted animal models. Because cardiac myocytes have strictly limited ability to regenerate, sustained programmed cell death is likely to contribute to the development and progression of heart failure in a variety of myocardial diseases. At the same time, the cardiac myocyte possesses a number of mechanisms for defence against short-term haemodynamic and oxidative stresses. Our laboratory has recently examined the role of nitric oxide (NO) as a regulator of the programmed death of cardiac myocytes, and the potential contribution of NO and NO-dependent signalling to the loss of myocytes in heart failure. We will review the role of c-Jun N-terminal kinase in response to oxidative and nitrosative stress, and summarise evidence for its role as a cytoprotective mechanism. We will also review evidence implicating NO in the pathophysiology of heart failure, in the context of the extensive and sometimes contradictory body of research on NO and cell survival. (Mol Cell Biochem 263: 35–53, 2004)  相似文献   

13.
Hepatocyte growth factor (HGF) has been proposed as an endogenous cardioprotective agent against oxidative stress. The mechanism of HGF action in the heart, however, has not yet been elucidated. The present study demonstrates that HGF protects adult cardiac myocytes against oxidative stress-induced apoptosis. HGF, at the concentrations which can be detected in the plasma of humans subsequent to myocardial infarction, effectively attenuated death of isolated adult rat cardiac myocytes and cultured HL-1 cardiac muscle cells induced by apoptosis-inducing oxidative stress stimuli such as daunorubicin, serum deprivation, and hydrogen peroxide. We identified expression of c-Met HGF receptor in adult cardiac myocytes, which can be rapidly tyrosine phosphorylated in response to HGF treatment. HGF also activated MEK, p44/42 MAPK, and p90RSK. To determine if MEK-MAPK pathway may be involved in the mechanism of HGF-mediated cardiac myocyte protection, effects of a specific MEK inhibitor, PD98059, were studied. Pretreatment of cells with PD98059 partially blocked HGF signaling for protection against hydrogen peroxide-induced cell death. Thus, HGF protects cardiac myocytes against oxidative stress, in part, via activating MEK-MAPK pathway.  相似文献   

14.
During myogenesis, proliferating myoblasts withdraw from the cell cycle and are either eliminated by programmed cell death or differentiate into mature myotubes. Previous studies indicate that mitogen-activated protein kinase (MAPK) activity is significantly induced with the onset of terminal differentiation of C2 myoblasts. We have investigated the part played by the MAPK pathway in the differentiation of C2 myoblasts. Specific activation of MAPK by expression of an active Raf1-estrogen receptor chimera protein reduced significantly the number of myoblasts undergoing programmed cell death in the differentiation medium. Activation of Raf1 prevented the proteolytic activation of the proapoptotic caspase 9-protein during differentiation. The antiapoptotic function of Raf1 correlated with accumulation of the p21WAF1 protein resulting from its increased stability. Antisense expression of p21 was used to determine whether the p21WAF1 protein mediated the antiapoptotic activity of Raf1. Reduction of p21WAF1 protein in muscle cells abolished the antiapoptotic activity of the MAPK pathway. We conclude that MAPK contributes to muscle differentiation by preventing apoptotic cell death of differentiating myoblasts and that this activity is mediated by stabilization of the p21WAF1 protein.  相似文献   

15.
16.
Adult cardiac myocytes are terminally differentiated cells that are no longer able to divide. Accumulating data support the idea that apoptosis in these cells is involved in the transition from cardiac compensation to decompensated heart failure. Since a number of neurohormonal factors are activated in this state, these factors may be involved in the positive and negative regulation of apoptosis in cardiac myocytes. beta1-Adrenergic receptor and angiotensin type 1 receptor pathways, nitric oxide and natriuretic peptides are involved in the induction of apoptosis in these cells, while alpha1- and beta2-adrenergic receptor and endothelin-1 type A receptor pathways and gp130-related cytokines are antiapoptotic. The myocardial protection of the latter is mediated, at least in part, through mitogen-activated protein kinase-dependent pathways, compatible with the findings in other cell types. In contrast, signaling pathways leading to apoptosis in cardiac myocytes are distinct from those in other cell types. The cAMP/PKA pathway induces apoptosis in cardiac myocytes and blocks apoptosis in other cell types. The p300 protein, a coactivator of p53, mediates apoptosis in fibroblasts but appears to play a protective role in differentiated cardiac myocytes. The inhibition of myocardial cell apoptosis in heart failure may be achieved by directly blocking apoptosis signaling pathways or by modulating neurohormonal factors involved in their regulation. These may provide novel therapeutic strategies in some forms of heart failure.  相似文献   

17.
18.
Growth hormone (GH) has been reported to be useful to treat heart failure. To elucidate whether GH has direct beneficial effects on the heart, we examined effects of GH on oxidative stress-induced apoptosis in cardiac myocytes. TUNEL staining and DNA ladder analysis revealed that hydrogen peroxide (H2O2)-induced apoptosis of cardiomyocytes was significantly suppressed by the pretreatment with GH. GH strongly activated extracellular signal-regulated kinases (ERKs) in cardiac myocytes and the cardioprotective effect of GH was abolished by inhibition of ERKs. Overexpression of dominant negative mutant Ras suppressed GH-stimulated ERK activation. Overexpression of Csk that inactivates Src family tyrosine kinases also inhibited ERK activation evoked by GH. A broad-spectrum inhibitor of protein tyrosine kinases (PTKs), genistein, strongly suppressed GH-induced ERK activation and the cardioprotective effect of GH against apoptotic cell death. GH induced tyrosine phosphorylation of EGF receptor and JAK2 in cardiac myocytes, and an EGF receptor inhibitor tyrphostin AG1478 and a JAK2 inhibitor tyrphostin B42 completely inhibited GH-induced ERK activation. Tyrphostin B42 also suppressed the phosphorylation of EGF receptor stimulated by GH. These findings suggest that GH has a direct protective effect on cardiac myocytes against apoptosis and that the effect of GH is attributed at least in part to the activation of ERKs through Ras and PTKs including JAK2, Src, and EGF receptor tyrosine kinase.  相似文献   

19.
Cells adapt to hyperosmotic conditions by several mechanisms, including accumulation of sorbitol via induction of the polyol pathway. Failure to adapt to osmotic stress can result in apoptotic cell death. In the present study, we assessed the role of aldose reductase, the key enzyme of the polyol pathway, in cardiac myocyte apoptosis. Hyperosmotic stress, elicited by exposure of cultured rat cardiac myocytes to the nonpermeant solutes sorbitol and mannitol, caused identical cell shrinkage and adaptive hexose uptake stimulation. In contrast, only sorbitol induced the polyol pathway and triggered stress pathways as well as apoptosis-related signaling events. Sorbitol resulted in activation of the extracellular signal-regulated kinase (ERK), p54 c-Jun N-terminal kinase (JNK), and protein kinase B. Furthermore, sorbitol treatment resulting in induction and activation of aldose reductase, decreased expression of the antiapoptotic protein Bcl-xL, increased DNA fragmentation, and glutathione depletion. Apoptosis was attenuated by aldose reductase inhibition with zopolrestat and also by glutathione replenishment with N-acetylcysteine. In conclusion, our data show that hypertonic shrinkage of cardiac myocytes alone is not sufficient to induce cardiac myocyte apoptosis. Hyperosmolarity-induced cell death is sensitive to the nature of the osmolyte and requires induction of aldose reductase as well as a decrease in intracellular glutathione levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号