首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Endothelial cell (EC) metabolism is emerging as a regulator of angiogenesis, but the precise role of glutamine metabolism in ECs is unknown. Here, we show that depriving ECs of glutamine or inhibiting glutaminase 1 (GLS1) caused vessel sprouting defects due to impaired proliferation and migration, and reduced pathological ocular angiogenesis. Inhibition of glutamine metabolism in ECs did not cause energy distress, but impaired tricarboxylic acid (TCA) cycle anaplerosis, macromolecule production, and redox homeostasis. Only the combination of TCA cycle replenishment plus asparagine supplementation restored the metabolic aberrations and proliferation defect caused by glutamine deprivation. Mechanistically, glutamine provided nitrogen for asparagine synthesis to sustain cellular homeostasis. While ECs can take up asparagine, silencing asparagine synthetase (ASNS, which converts glutamine‐derived nitrogen and aspartate to asparagine) impaired EC sprouting even in the presence of glutamine and asparagine. Asparagine further proved crucial in glutamine‐deprived ECs to restore protein synthesis, suppress ER stress, and reactivate mTOR signaling. These findings reveal a novel link between endothelial glutamine and asparagine metabolism in vessel sprouting.  相似文献   

4.
Recent studies have documented transfer of labeled nitrogen from [2-(15)N]glutamine to citrulline and arginine in fasting human adults. Conversely, in neonates and piglets we have shown no synthesis of arginine from [2-(15)N]glutamate, and others have shown in mice that glutamine is a nitrogen, but not a carbon donor, for arginine synthesis. Therefore, we performed a multitracer study to determine whether glutamine is a nitrogen and/or carbon donor for arginine in healthy adult men. Two glutamine tracers, 2-(15)N and 1-(13)C, were given enterally to five healthy men fed a standardized milkshake diet. There was no difference in plasma enrichments between the two glutamine tracers. 1-(13)C isotopomers of citrulline and arginine were synthesized from [1-(13)C]glutamine. Three isotopomers each of citrulline and arginine were synthesized from the [2-(15)N]glutamine tracer: 2-(15)N, 5-(15)N, and 2,5-(15)N(2). Significantly greater enrichment was found of both [5-(15)N]arginine (0.75%) and citrulline (3.98%) compared with [2-(15)N]arginine (0.44%) and [2-(15)N]citrulline (2.62%), indicating the amino NH(2) from glutamine is mostly transferred to arginine and citrulline by transamination. Similarly, the enrichment of the 1-(13)C isotopomers was significantly less than the 2-(15)N isotopomers, suggesting rapid formation of α-ketoglutarate and recycling of the nitrogen label. Our results show that the carbon for 50% of newly synthesized arginine comes from dietary glutamine but that glutamine acts primarily as a nitrogen donor for arginine synthesis. Hence, studies using [2-(15)N]glutamine will overestimate arginine synthesis rates.  相似文献   

5.
Klebsiella aerogenes formed two N2-acetylornithine 5-aminotransferases (ACOAT) which were separable by diethylaminoethyl-cellulose chromatography. One ACOAT was repressed when the cells grew on arginine-containing medium, indicating its function in arginine biosynthesis. The second ACOAT was induced when arginine or ornithine was present in the medium as the sole source of carbon or nitrogen, suggesting its function in the catabolism of these compounds. The induced enzyme was purified almost to homogeneity. Its molecular weight is 59,000; it is a pyridoxal 5-phosphate-dependent enzyme and exhibits activity with N2-acetylornithine (Km = 1.1 mM) as well as with ornithine (Km = 5.4 mM). ACOAT did not catalyze the transamination of putrescine or 4-aminobutyrate. The best amino acceptor was 2-ketoglutarate (Km = 0.7 mM). ACOAT formation was subject to catabolite repression exerted by glucose when ammonia was present in excess. When the cells were deprived of nitrogen, ACOAT escaped from catabolite repression. This activation was mediated by glutamine synthetase as shown by the fact that mutants affected in the regulation or synthesis of glutamine synthetase were also affected in the control of ACOAT formation.  相似文献   

6.
The metabolism of 2.5 mM-[15N]aspartate in cultured astrocytes was studied with gas chromatography-mass spectrometry. Three primary metabolic pathways of aspartate nitrogen disposition were identified: transamination with 2-oxoglutarate to form [15N]glutamate, the nitrogen of which subsequently was transferred to glutamine, alanine, serine and ornithine; condensation with IMP in the first step of the purine nucleotide cycle, the aspartate nitrogen appearing as [6-amino-15N]adenine nucleotides; condensation with citrulline to form argininosuccinate, which is cleaved to yield [15N]arginine. Of these three pathways, the formation of arginine was quantitatively the most important, and net nitrogen flux to arginine was greater than flux to other amino acids, including glutamine. Notwithstanding the large amount of [15N]arginine produced, essentially no [15N]urea was measured. Addition of NaH13CO3 to the astrocyte culture medium was associated with the formation of [13C]citrulline, thus confirming that these cells are capable of citrulline synthesis de novo. When astrocytes were incubated with a lower (0.05 mM) concentration of [15N]aspartate, most 15N was recovered in alanine, glutamine and arginine. Formation of [6-amino-15N]adenine nucleotides was diminished markedly compared with results obtained in the presence of 2.5 mM-[15N]aspartate.  相似文献   

7.
Neurospora crassa mutant impaired in glutamine regulation.   总被引:3,自引:1,他引:2       下载免费PDF全文
The final products of the catabolism of arginine that can be utilized as nitrogen sources by Neurospora crassa are ammonium, glutamic acid, and glutamine. Of these compounds, only glutamine represses arginase and glutamine synthetase. We report here the isolation and characterization of a mutant of N. crassa whose arginase, glutamine synthetase, and amino acid accumulations are resistant to glutamine repression (glnI). This mutant has a greater capacity than the wild type (glns) to accumulate most of the arginine and some of the glutamine in osmotically sensitive compartments while growing exponentially. Nonetheless, the major part of the glutamine remains soluble and metabolically available for repression. We propose that the lower repression of glutamine synthetase by glutamine in this mutant could be a necessary condition for sustaining the higher flow of nitrogen for the accumulation of amino acids observed in ammonium excess and that, if glutamine is the nitrogen signal that regulates the arginine accumulation of the vesicle, the glnr mutant has also escaped this control. Finally, in the glnr mutant, some glutamine resynthesis is necessary for arginine biosynthesis and accumulation.  相似文献   

8.
9.
Methylammonium/ammonium ion, glutamine, glutamate, arginine and proline uptake, and their assimilation as nitrogen sources, was studied in Nostoc muscorum and its glutamine synthetase-deficient mutant. Glutamine served as nitrogen source independent of glutamine synthetase activity. Glutamate was not metabolised as a nitrogen source but still inhibited nitrogenase activity and diazotrophic growth. Glutamine synthetase activity was essential for the assimilation of N2, ammonia, arginine and proline as nitrogen sources but not for the control of their transport, heterocyst formation, and production of ammonia or aminoacid dependent repressor signal for N2-fixing heterocysts. These results also suggest that glutamine synthetase serves as the sole route of ammonia assimilation and glutamine synthesis, and ammonia per se as the repressor signal for N2-fixing heterocysts and methylammonium (ammonium) transport.  相似文献   

10.
Weissman , Gerard S. (Rutgers U., Camden, N. J.) Influence of ammonium and nitrate on the protein- and amino acids in shoots of wheat seedlings. Amer. Jour. Bot. 46(5): 339–346. 1959.—Total and protein nitrogen per shoot of wheat seedlings grown with endosperm attached increased at a steady rate during a 96-hr. growth period, and protein nitrogen, as a percentage of total nitrogen, remained constant at about 53%. Total and protein nitrogen concentration was greatest for 24-hr. shoots and declined as the shoots became older. Total and protein nitrogen were determined in 96-hr. shoots of seedlings grown with endosperm attached but also supplied with ammonium, nitrate, or both in the culture solution. Total nitrogen was greatest in shoots supplied with ammonium, but only 38% was in the form of protein. Maximum protein synthesis occurred in shoots grown in both ammonium and nitrate and protein nitrogen as a percentage of total nitrogen approximated that achieved in shoots lacking nitrogen in the culture solution. The protein amino acid composition of 48-, 72-, and 96-hr. shoots was very similar but differed from 24-hr. shoots which contained higher percentages of arginine and lysine and lower percentages of alanine and threonine. This may be correlated with the higher proportion of meristematic cells in 24-hr. shoots. The protein amino acids in shoots grown with ammonium resembled that of shoots lacking nitrogen in the culture solution, but nitrate shoot protein contained a higher percentage of arginine and a lower percentage of lysine. Nitrate may stimulate the formation of enzymes, possibly of a nitrate-reducing system, with high arginine- low lysine content. Free asparagine and glutamine were both at a maximum in ammonium shoots and at a minimum in nitrate shoots, but asparagine predominated in shoots supplied with ammonium while glutamine was greatest in nitrate shoots. Aspartic acid, asparagine, and glutamine appeared to have ammonia-storage functions, but glutamic acid appeared to be primarily concerned with protein synthesis. Amino acid accumulation was greatest in shoots supplied with both ammonium and nitrate. Protein synthesis in these appeared to be limited by inadequate concentrations of glutamic acid and proline. A hypothesis is proposed in explanation of the high glutamic acid concentration in shoots provided with ammonium and nitrate.  相似文献   

11.
This work was carried out to evaluate the importance of glial cells in providing precursors for the in vivo synthesis of gamma-aminobutyric acid (GABA). Fluorocitrate, which selectively inhibits the tricarboxylic acid cycle in glial cells, was administered locally in rat neostriatum. Inhibition of the glial cell tricarboxylic acid cycle led to a decrease both in glutamine level and in gamma-vinyl GABA (GVG)-induced GABA accumulation, an observation indicating reduced GABA synthesis. The role of glutamine, which is synthesized in glial cells as a precursor for GABA, was further investigated by inhibition of glutamine synthetase with intrastriatally administered methionine sulfoximine. In this case, the glutamine level was reduced to near zero values, and the GVG-induced GABA accumulation was only half that of normal. The results show that glutamine is an important precursor for GABA synthesis, but it cannot be the sole precursor because it was not possible to depress the GVG-induced GABA accumulation completely.  相似文献   

12.
Nitrogen regulation of arginase in Neurospora crassa.   总被引:5,自引:3,他引:2       下载免费PDF全文
The final products of the arginine catabolism that can be utilized as a nitrogen source in Neurospora crassa are ammonium, glutamic acid, and glutamine. The effect of these compounds on arginase induction by arginine was studied. In wild-type strain 74-A, induction by arginine was almost completely repressed by glutamic acid plus ammonium, whereas ammonium or glutamic acid alone had only moderate effects. Arginine products of catabolism also repressed arginase induction. A mutant, ure-1, which lacks urease activity, hyperinduced its arginase with arginine as a nitrogen source. The addition of either ammonium or glutamine produced effects similar to those in the wild-type strain. The effect of ammonium on arginase induction is mediated through its conversion into glutamine. This was demonstrated in mutant am-1, which lacks L-glutamate dehydrogenase activity. In this mutant, the effect of glutamic acid was reduced, and, with ammonium, it was completely lost. The addition of glutamine or glutamic acid plus ammonium to this strain decreased by threefold the induction of arginase by arginine. Proline, a final product of arginine catabolism, competitively inhibited arginase activity. This effect and the repression of arginase by glutamine are examples of negative modulation of the first enzyme in a catabolic pathway by its final products.  相似文献   

13.
The induced synthesis of β-galactosidase in non-growing cells ofEscherichia coli starving for exogenous carbon and nitrogen sources was stimulated markedly by the addition of any of four nucleosides tested: adenosine, guanosine, cytidine, and uridine. Adenosine was used as a representative of this group of compounds in most experiments. The decrease of ability of the cells to synthesize β-galactosidase, resulting from a prolonged starvation for exogenous carbon and nitrogen, was removed by adenosine. This compound also considerably reduced the inhibitory effect of metabolic poisons on the induced synthesis of β-galactosidase. The blockade of induced β-galactosidase synthesis evoked in aerobically grown cells by anaerobic starvation for exogenous sources of carbon and nitrogen was also significantly reduced by adenosine. The weak transient catabolic repression of induced synthesis of β-galactosidase evoked by glucose in non-growing cells ofEscherichia coli deprived of exogenous carbon and nitrogen sources was prevented by adenosine. The total repression caused by higher glucose concentrations was not influenced by this compound. The results are discussed from the point of view of the role of the energy state ofEscherichia coli cells in the regulation of β-galactosidase synthesis.  相似文献   

14.
Five amino acids are accumulated during vegetative growth of Neurospora crassa, particularly.during the prestationary growth phase. Alanine, glutamine, glutamate, arginine and ornithine.comprised over 80% of the total amino acid pool in the mycelium. Amino acid pools of different amino acid auxotrophs were followed during the partial transformation of a mycelial mat into an aerial mycelium. The mycelial mat under starvation and in direct contact with air rapidly formed aerial mycelium, which produced thereafter a burst of conidia. During this process,glutamine and alanine in the mycelial mat were consumed more rapidly than other amino acids;in the growing aerial mycelium, glutamate and glutamine were particularly accumulated. Of the amino acids that were initially accumulated in the mycelial mat, only a high glutamine pool was required for aerial mycelium growth induced by starvation. This requirement for glutamine could not be satisfied by a mixture of the amino compounds that are synthesized via glutamine amidotransferase reactions. It is proposed that glutamine serves as a nitrogen carrier from the mycelial mat to the growing aerial mycelium.  相似文献   

15.
Abstract The uptake of arginine and proline and their assimilation as nitrogen source have been studied in the cyanobacterium Anabaena cycadeae and its glutamine auxotropic mutant lacking glutamine synthetase activity. The uptake pattern of arginine and proline was found to be biphasic in both wild-type and mutant strains, consisting of an initial fast phase lasting up to 60 s followed by a slower second phase. The uptake activities of both the amino acids were also found to be similar in both the strains. The wild-type strain, having normal glutamine synthetase activity, utilized arginine and proline as sole nitrogen source, whereas the mutant strain lacking glutamine synthetase activity could not do so. These results suggest that: (1) glutamine synthetase activity is necessarily required for the assimilation of arginine and proline as nitrogen source, but it is not required for the uptake of these amino acids; and (2) glutamine synthetase serves as the sole ammonia-assimilating enzyme as well as glutamine-forming route in heterocystous cyanobacteria.  相似文献   

16.
Urease was purified 24-fold from extracts of Klebsiella aerogenes. The enzyme has a molecular weight of 230,000 as determined by gel filtration, is highly substrate specific, and has a Km for urea of 0.7 mM. A mutant strain lacking urease was isolated; it failed to grow with urea as the sole source of nitrogen but did grow on media containing other nitrogen sources such as ammonia, histidine, or arginine. Urease was present at a high level when the cells were starved for nitrogen; its synthesis was repressed when the external ammonia concentration was high. Formation of urease did not require induction by urea and was not subject to catabolite repression. Its synthesis was controlled by glutamine synthetase. Mutants lacking glutamine synthetase failed to produce urease, and mutants forming glutamine synthetase at a high constitutive level also formed urease constitutively. Thus, the formation of urease is regulated like that of other enzymes of K. aerogenes capable of supplying the cell with ammonia or glutamate.  相似文献   

17.
Citrulline (Cit) is a non-essential amino acid whose metabolic properties were largely ignored until the last decade when it began to emerge as a highly promising nutrient with many regulatory properties, with a key role in nitrogen homeostasis. Because Cit is not taken up by the liver, its synthesis from arginine, glutamine, ornithine and proline in the intestine prevents the hepatic uptake of the two first amino acids which activate the urea cycle and so prevents amino acid catabolism. This sparing effect may have positive spin-off for muscle via increased protein synthesis, protein content and functionality. However, the mechanisms of action of Cit are not fully known, even if preliminary data suggest an implication of mTOR pathway. Further exploration is needed to gain a complete overview of the role of Cit in the control of nitrogen homeostasis.  相似文献   

18.
To determine whether Salmonella typhimurium has a nitrogen control response, we have examined the regulation of nitrogen utilization in two mutants with fivefold and threefold elevations in their glutamine synthetase activities. The mutants do not require glutamine for growth on glucose--ammonia medium but do have altered growth on other nitrogen sources. They grow better than an isogenic control on media containing arginine or asparate, but more slowly with proline or alanine as nitrogen sources. This unusual growth pattern is not due to altered regulation of the ammonia assimilatory enzymes, glutamate dehydrogenase and glutamate synthase, or to changes in the enzymes for aspartate degradation. However, transport for several amino acids may be affected. Measurement of amino acid uptake show that the mutants with high glutamine synthetase levels have increased rates for glutamine, arginine, aspartate, and lysine, but a decreased rate for proline. The relationship between glutamine synthetase levels and uptake was examined in two mutants with reduced, rather than increased, glutamine synthetase production. The uptake rates for glutamine and lysine were lower in these two glutamine auxotrophs than in the Gln+ controls. These results show a correlation between the glutamine synthetase levels and the uptake rates for several amino acids. In addition, the pleiotropic growth of the mutants with elevated glutamine synthetase activities suggests that a nitrogen control response exists for S. typhimurium and that it can be altered by mutations affecting glutamine synthetase regulation.  相似文献   

19.
The free and protein amino acid composition of Glycine max (L.) Merrill cotyledons was determined for the entire developmental period using high performance liquid chromatography. Arginine constituted 18% of the total protein nitrogen throughout development, and there was a linear arginine nitrogen accumulation rate of 1212 nanomoles per cotyledon per day between 16 and 58 days after anthesis. Arginine and asparagine were major constituents of the free amino acid pool, constituting 14 to 62% and 2 to 41% of the total free amino acid nitrogen, respectively. The urea cycle intermediates, citrulline, ornithine, and argininosuccinate were also detected in the free pool. A comparison of the amino acid composition of cotyledonary protein and of seedcoat exudate suggested that 72% of the cotyledon's arginine requirement is satisfied by in situ biosynthesis, and that 20% of the transformed nitrogen is incorporated into arginine. Also, [1-14C]glutamate and [U-14C]glutamine were fed to excised cotyledons. After 4 hours, 14C was incorporated into protein and released as 14CO2, but none was incorporated into the C-1 and C-6 positions of free and protein arginine, determined using arginine-specific enzyme-linked assays. It is not currently known whether arginine biosynthesis in the cotyledon involves glutamate delivered from the mother plant or glutamate derived in situ.  相似文献   

20.
Nitrogen starvation has been shown to increase the cytosolic arginine concentration and to accelerate protein turnover in mycelia of Neurospora crassa. The cytosolic arginine is derived from a metabolically inactive vacuolar pool. Redistribution of arginine between cytosolic and vacuolar compartments is the result of mobilization of this metabolite in response to nitrogen starvation. Mobilization of arginine (and purines) also occurred in response to glutamine limitation, but arginine accumulated upon proline starvation. These observations indicate that mobilization is a consequence of glutamine limitation rather than a general response to amino acid starvation (or limitation). Analysis of the amino acid pools in mycelia subjected to starvation or limitation suggests that glutamine (or a metabolite derived from glutamine) provides a signal which determines the metabolic fate of vacuolar arginine. The results are consistent with the hypothesis that vacuolar compartmentation provides a readily available store of nitrogen-rich compounds to be utilized during differentiation or under conditions of nutritional stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号