首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
In response to a meiosis-inducing hormone, 1-methyladenine (1-MA), starfish oocytes undergo reinitiation of meiosis with germinal vesicle breakdown. The 1-MA-initiated signal is, however, inhibited by prior microinjection of pertussis toxin into the oocytes (Shilling, F., Chiba, K., Hoshi, M., Kishimoto, T., and Jaffe, L.A. (1989) Dev. Biol. 133, 605-608), suggesting that a pertussis-toxin-sensitive guanine-nucleotide-binding protein (G protein) is involved in the 1-MA-induced signal transduction. Based on these findings, we purified a G protein serving as the substrate of pertussis toxin from the plasma membranes of starfish oocytes. The purified G protein had an alpha beta gamma-trimeric structure consisting of 39-kDa alpha, 37-kDa beta, and 8-kDa gamma subunits. The 39-kDa alpha subunit contained a site for ADP-ribosylation catalyzed by pertussis toxin. The alpha subunit was also recognized by antibodies specific for a common GTP-binding site of many mammalian alpha subunits or a carboxy-terminal ADP-ribosylation site of mammalian inhibitory G-alpha. An antibody raised against mammalian 36-/35-kDa beta subunits strongly reacted with the 37-kDa beta subunit of starfish G protein. The purified starfish G protein had a GTP-binding activity with a high affinity and displayed a low GTPase activity. The activity of the G protein serving as the substrate for pertussis-toxin-catalyzed ADP-ribosylation was inhibited by its association with a non-hydrolyzable GTP analogue. Thus, the starfish G protein appeared to be similar to mammalian G proteins at least in terms of its structure and properties of nucleotide binding and the pertussis toxin substrate. A possible role of the starfish G protein is also discussed in the signal transduction between 1-MA receptors and reinitiation of meiosis with germinal vesicle breakdown.  相似文献   

2.
Summary

1-Methyladenine (1-MA) secreted from the follicle cells is the biological signal for meiosis reinitiation of starfish oocytes. The signal of-1-MA is transduced into cytoplasmic formation of maturation-promoting factor (MPF) that eventually induces a germinal vesicle breakdown (GVBD). Microinjection of pertussis toxin (PTX) inhibited 1-MA-induced GVBD in Asterina pectinifera and Asterina (Patina) miniata. PTX-inhibition of GVBD was rescued by the injection of MPF into PTX-preinjected oocytes. Most of the PTX- and MPF-double injected eggs were fertilized and underwent cleavage, suggesting the presence of a GTP-binding protein (G protein) specific for 1-MA signal transduction. Indeed, plasma membrane preparations of A. pectinifera oocytes contained a G protein consisting of 39-kDa α, 37-kDa β, and 8-kDa γ subunits. The α subunit contained a site for ADP-ribosylation catalyzed by PTX. It was also recognized by antibodies specific for a common GTP-binding site of mammalian α subunits or a carboxy-terminal ADP-ribosylation site of mammalian inhibitory G protein (Gi) α subunits. Its gene was 74% and 83.7% identical to the rat Gi-2α gene in nucleotide and deduced amino acid sequences, respectively. The 39-kDa α subunit shared the common GTP-binding site of mammalian G protein α subunits and the PTX-catalyzed ADP-ribosylation site of mammalian Gi α subunits as expected from the immunoreactivity. The oocyte membranes had apparently two forms of 1-MA receptors with high and low affinities. The high-affinity form was converted into the low-affinity one in the presence of a non-hydrolyzable analogue of GTP. The 39-kDa α subunit of starfish G protein was also ADP-ribosylated by cholera toxin only when 1-MA was added to the membranes. These results indicate that in starfish oocyte membranes, 1-MA receptors are functionally coupled with the 39-kDa PTX-substrate G protein that transduces the signal into the formation of a cytoplasmic factor (MPF) and eventually into the reinitiation of meiosis.  相似文献   

3.
The alpha-subunit of Gi-2, in addition to that of Gs (GTP-binding proteins involved in adenylate cyclase inhibition and stimulation, respectively) was ADP-ribosylated by cholera toxin in HL-60 cell membranes when a chemotactic receptor was stimulated by formyl-Met-Leu-Phe (fMLP), and the sites modified by cholera and pertussis toxins on the alpha-subunit of Gi-2 were different (Iiri, T., Tohkin, M., Morishima, N., Ohoka, Y., Ui, M., and Katada, T. (1989) J. Biol. Chem. 264, 21394-21400). In order to investigate how the functions of Gi-2 were modified by cholera toxin, the ADP-ribosylated and unmodified proteins were purified from HL-60 cell membranes that had been incubated in the presence and absence of cholera toxin, respectively. The modified Gi-2 displayed unique properties as follows. 1) The ADP-ribosylated alpha-subunit had a more acidic pI than the unmodified one, leading to a partial resolution of the modified Gir2 trimer from the unmodified protein by an anion column chromatography. 2) When the purified proteins were incubated with [gamma-32P]GTP, the radioactivity was more greatly retained in the modified Gi-2 than in the unmodified protein. 3) The actual catalytic rate (kcat) of GTP hydrolysis was, indeed, markedly inhibited by cholera toxin-induced modification. 4) There was an increase in the apparent affinity of Gi-2 for GDP by cholera toxin-induced modification. 5) The modified Gi-2 exhibited a low substrate activity for pertussis toxin-catalyzed ADP-ribosylation. 6) A high-affinity fMLP binding to HL-60 cell membranes was more effectively reconstituted with the ADP-ribosylated Gi-2 than with the unmodified protein. These results suggested that the agonist-fMLP receptor complex was effectively coupled with the ADP-ribosylated Gi-2, resulting in the GTP-bound form, and that the hydrolysis of GTP on the modified alpha-subunit was selectively attenuated. Thus, cholera toxin ADP-ribosylated Gi-2 appeared to be not only a less sensitive pertussis toxin substrate but also an efficient signal transducer between receptors and effectors.  相似文献   

4.
A 40-kDa protein, in addition to the alpha-subunits of Gs (a GTP-binding protein involved in adenylate cyclase stimulation), was [32P]ADP-ribosylated by cholera toxin (CT) in the membranes of neutrophil-like HL-60 cells, only if formyl Met-Leu-Phe (fMLP) was added to the ADP-ribosylation mixture. The 40-kDa protein proved to be the alpha-subunit of Gi serving as the substrate of pertussis toxin, islet-activating protein (IAP). No radioactivity was incorporated into this protein in membranes isolated from HL-60 cells that had been exposed to IAP. Gi-alpha purified from bovine brain and reconstituted into IAP-treated cell membranes was ADP-ribosylated by CT plus fMLP. Gi-alpha was ADP-ribosylated by IAP, but not by CT plus fMLP, in membranes from cells that had been pretreated with CT plus fMLP. When membrane Gi-alpha [32P]ADP-ribosylated by CT plus fMLP or IAP was digested with trypsin, the radiolabeled fragments arising from the two proteins were different from each other. These results suggest that CT ADP-ribosylates Gi-alpha in intact cells when coupled fMLP receptors are stimulated and that the sites modified by two toxins are not identical. CT-induced and fMLP-supported ADP-ribosylation of Gi-alpha was favored by Mg2+ and allow concentrations of GTP or its analogues but suppressed by GDP. The ADP-ribosylation did not occur at all, even in the presence of ADP-ribosylation factor that supported CT-induced modification of Gs, in phospholipid vesicles containing crude membrane extract in which Gi was functionally coupled to stimulated fMLP receptors. Thus, Gi activated via coupled receptors is the real substrate of CT-catalyzed ADP-ribosylation. This reaction may depend on additional factor(s) that are too labile to survive the process of membrane extraction.  相似文献   

5.
In the rat pituitary cell line GH3, carbachol inhibits PRL secretion in a pertussis toxin-sensitive manner. For elucidation of the underlying mechanisms, we studied the effect of carbachol on voltage-dependent Ca2+ currents. Under voltage-clamp conditions, carbachol inhibited whole-cell Ca2+ currents by about 25%. This inhibitory action of carbachol was not observed in cells treated with pertussis toxin, indicating the involvement of a pertussis toxin-sensitive G-protein. In membranes of GH3 cells, carbachol stimulated a pertussis toxin-sensitive high-affinity GTPase. In immunoblot experiments with peptide antisera, we identified two forms of the Gi alpha-subunit (41 and 40 kDa) and two forms of the Go alpha-subunit (40 and 39 kDa). The 40-kDa Gi alpha-subunit was recognized by an antibody specific for the Gi2 alpha-subunit, and the 39-kDa Go alpha-subunit was detected by an antibody specific for the Go2 alpha-subunit. Incubation of membranes with the photoreactive GTP analog [alpha-32P]GTP azidoanilide resulted in photo-labelling of 40- and 39-kDa pertussis toxin substrates comigrating with G-protein alpha-subunits of the corresponding molecular masses. Carbachol dose-dependently stimulated incorporation of the photoreactive GTP analog into the 39-kDa pertussis toxin substrate and, to a lesser extent, into 40-kDa pertussis toxin substrates. The data indicate that muscarinic receptors of GH3 cells couple preferentially to Go, which is likely to be involved in the inhibition of secretion, possibly by conferring an inhibitory effect to voltage-dependent Ca2+ channels.  相似文献   

6.
We have isolated the major GTP-binding proteins from myeloid HL-60 cell plasma membranes. Two pertussis toxin substrates with similar apparent molecular masses of 40 and 41 kDa, respectively, are contained in these preparations, with both proteins being ADP-ribosylated to a similar extent. Partial chymotryptic proteolysis of fractions containing the [32P]ADP-ribosylated 40-kDa GTP-binding protein alpha subunit demonstrated production of 32P-labeled peptides of 28 and 16 kDa which were not observed after partial proteolysis of fractions containing solely the 41-kDa protein. Similarly, mild acid hydrolysis produced an additional 28-kDa fragment only from fractions containing the 40-kDa protein. The results presented here indicate the presence of two distinct pertussis toxin substrates in myeloid cells. The 41-kDa pertussis toxin substrate is likely to represent the alpha subunit of the inhibitory GTP-binding regulatory protein of adenylate cyclase, whereas the 40-kDa substrate may represent the alpha subunit of the GTP-binding protein which is coupled to chemoattractant receptors. In addition to the pertussis toxin substrates, an additional major peak of guanosine 5'-(3-O-thio)triphosphate-binding activity closely corresponded to the appearance of a 23-kDa protein.  相似文献   

7.
Starfish oocytes are arrested naturally in the late G(2) phase of the first meiotic division. In response to the natural maturation-inducing hormone, 1-methyladenine (1-MA), oocytes undergo reinitiation of meiosis with germinal vesicle breakdown. We tested 10 newly synthesized N1-substituted adenines that are 1-MA analogues to analyze the interaction between 1-MA and its stereo-specific receptors on the oocyte plasma membranes of the starfish Asterina pectinifera. Among these analogues, 1-(beta-naphthylmethyl)adenine, 1-aminoadenine and 1-(p-nitrobenzyl)adenine played agonistic roles in the induction of oocyte maturation. 1-(o-Nitrobenzyl)adenine, 1-(m-nitrobenzyl)adenine, 1-phenethyladenine and 1-(p-nitrophenethyl)adenine had antagonist effects on 1-MA-induced oocyte maturation. These agonists and antagonists behaved competitively in the binding of [3H]1-MA to receptors in oocyte cortices. In contrast, 1-(alpha-naphthylmethyl)adenine, 1-(2,4-dinitrobenzyl)adenine and 1-(p-methoxybenzyl)adenine had no effects on oocyte maturation. Our results suggest that regional-specific sterical structures at the N1-site of adenine are important in the interaction between 1-MA and its receptors in oocytes. In addition, a negative charge at the N1-site of adenine is required for binding with the receptors.  相似文献   

8.
Starfish-oocyte maturation induced by 1-methyladenine (MeAde) was inhibited by microinjection of pertussis toxin (PTX). The inhibition appeared to result from PTX-catalyzed ADP-ribosylation of a 39-kDa guanosine-nucleotide-binding regulatory protein (G protein) in the oocyte. These results strongly support the hypothesis that the MeAde-induced signals operate via a membrane receptor and are carried by the PTX-sensitive G protein. When PTX-injected oocytes were treated with dithiothreitol, 85% of them reinitiated meiosis, suggesting that dithiothreitol did not act on the MeAde receptor. We constructed a cDNA library from the immature ovary of starfish, Asterina pectinifera, and screened it with the cDNA of the alpha subunit of an inhibitory rat G protein (Gi-2). A positive cDNA clone contained an open reading frame of 1062 bases which had 74% identity with the rat Gi-2 cDNA. The deduced amino acid sequence was 85% and 89% identical to rat Gi-2 and rat Gi-1, respectively. The alpha subunit of the G protein purified from cortices of starfish oocytes was digested by trypsin and the resulting four peptides were microsequenced. Comparison of these amino acid sequences with the predicted one indicated that the isolated cDNA clone encoded the alpha subunit of the PTX-sensitive G protein in oocytes. The C-terminal sequence, KNNLKDCGLF, was identical to that of Gi, suggesting that the cysteine residue is the site of ADP-ribosylation.  相似文献   

9.
Bovine cerebral cortex contains two major substrates for ADP-ribosylation by pertussis toxin: a 39-kDa protein, alpha 39, and a 41-kDa protein, alpha 41 (Neer, E. J., Lok, J. M., and Wolf, L. G. (1984) J. Biol. Chem. 259, 14222-14229). Both of these proteins bind guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) with a similar affinity (Kd = 30 +/- 10 nM for alpha 39, Kd = 32 +/- 14 nM for alpha 41). Both proteins associate with a beta X gamma subunit made up of a 36-kDa beta component and a 6-kDa gamma component. We have previously shown that the beta X gamma unit is required for pertussis toxin-catalyzed ADP-ribosylation (Neer et al. (1984)). By measuring the amount of beta X gamma required for maximal incorporation of ADP-ribose, we now find that the EC50 for beta X gamma in this reaction is 3 +/- 1 times lower for alpha 41 than for alpha 39. ADP-ribosylation by pertussis toxin does not prevent dissociation of alpha 41 X beta X gamma or alpha 39 X beta X gamma by GTP gamma S. GTP gamma S decreases the sedimentation coefficient of ADP-ribosylated alpha 41 from 4.2 S to 3.0 S and the sedimentation coefficient of ADP-ribosylated alpha 39 from 4.3 S to 2.9 S. The conclusion that GTP gamma S dissociates both ADP-ribosylated heterotrimers was confirmed by the observation that GTP gamma S blocks precipitation of ADP-ribosylated alpha 39 or alpha 41 by anti-beta antibody. Neither alpha 41 X beta X gamma nor alpha 39 X beta X gamma is dissociated by GTP whether or not the proteins are ADP-ribosylated. The observation that alpha 41 more readily associates with beta X gamma than does alpha 39 may explain our earlier observation that alpha 41 is more readily ADP-ribosylated than alpha 39. In most intact membranes, only a 41-kDa ADP-ribosylated protein is seen. However, alpha 39 is also present in most tissues since we can detect it with anti-alpha 39 antibody. The functional consequences of pertussis toxin treatment may depend on whether one or both proteins are ADP-ribosylated. This in turn may depend on the ratio of alpha 41 and alpha 39 to beta X gamma in a given tissue.  相似文献   

10.
Using high-resolution Mono Q column chromatography, we purified 6 distinct peaks of GTP-binding proteins from bovine brain membranes. Five of them consisted of 3 polypeptides with alpha beta gamma-subunits and served as the substrate of islet-activating protein (IAP), pertussis toxin. The other one was purified as alpha-subunit alone and was also ADP-ribosylated by IAP in the presence of beta gamma-subunits. When each alpha-subunit was characterized by immunoblot analysis using various antibodies with defined specificity, the two of them were identified as Gi-1 and Gi-2, and other 4 appeared to be Go or Go-like G proteins. The alpha-subunits of immunologically Go-like proteins were apparently distinguishable from one another on elution profiles from the Mono Q column. Thus, there was a heterogeneity of the alpha-subunit of Go in the brain membranes.  相似文献   

11.
The ontogenesis of alpha 2-adrenoceptors and GTP-binding proteins and their coupling activity were investigated in telencephalon membranes of developing rats. The manganese-induced elevation of [3H]clonidine binding was increased in an age-dependent manner but the guanosine 5'-O-(3-thio)triphosphate-induced decrease in binding did not change. The extent of the binding of [3H]clonidine at 15 nM (saturable concentration) increased in an age-dependent manner and reached the adult level at 4 days after birth. Cholera toxin and pertussis toxin catalyzed ADP-ribosylation of proteins of 46 and 41/39 kilodaltons (kDa) in solubilized cholate extracts of the membranes. The 41/39-kDa proteins ADP-ribosylated by pertussis toxin (Gi alpha + Go alpha) were increased with age and reached the adult level at day 12, whereas the 46-kDa protein (Gs alpha) reached its peak on day 12 and then decreased to the fetal level at the adult stage. The immunoblot experiments of the homogenates with antiserum (specific antibody against alpha- and beta-subunit of GTP-binding proteins) demonstrated that the 39-kDa alpha-subunit of (Go alpha) and the 36-kDa beta-subunit of GTP-binding protein (beta 36) increased with postnatal age. In contrast, 35-kDa beta-subunit (beta 35) did not change. From these results, it is suggested that the coupling activity of alpha 2-adrenoceptor with GTP-binding protein gradually develops in a manner parallel with the increase of alpha 2-adrenoceptor and pertussis toxin sensitive GTP-binding proteins, Gi, and that alpha 39 beta 36 gamma may be related to the differentiation and/or growth of nerve cells in rat telencephalon.  相似文献   

12.
Detergent extraction of plasma membranes from differentiated HL60 cells, specifically labeled with the chemoattractant, formyl-Nle-Leu-Phe-Nle-[125I-Tyr] Lys, resulted in the solubilization of a receptor-radioligand complex. GTP-binding activity coeluted with the radioligand when the sodium cholate extract was purified by chromatography on wheat germ agglutinin-Sepharose 6MB. A molecular size of approximately 59 A was estimated for the lectin-Sepharose-purified receptor complex by gel filtration chromatography on Ultrogel AcA 34. The isolated complex eluted from the gel filtration column exhibited an enhanced rate of ligand dissociation in response to GTP gamma S. Approximately 0.65 mol of pertussis toxin substrate/mol of receptor was estimated following partial purification of the receptor-ligand complex by sequential chromatography on wheat germ agglutinin-Sepharose, DEAE-Fractogel, and Ultrogel AcA 34. The pertussis toxin substrate which copurified with the receptor was compared with two distinct G proteins, containing alpha-subunits of 40 and 41 kDa, previously purified from HL60 cell plasma membranes. Approximately 86% of the pertussis toxin substrate identified in the receptor preparation consisted of the 40-kDa polypeptide. Differences in the peptide maps indicate that the predominant G protein which coelutes with the receptor is distinct from the purified G protein with an alpha-subunit of 41 kDa but homologous to the purified G protein with an alpha-subunit of 40 kDa.  相似文献   

13.
beta gamma subunits of G proteins were purified from starfish oocytes, and their role in the induction of oocyte maturation by 1-methyladenine was investigated. When injected into starfish oocytes, the purified beta gamma subunit of the starfish G protein induced germinal vesicle breakdown (GVBD) faster than that of bovine brain G protein. Injection of the starfish beta gamma into cytoplasm near the germinal vesicle (GV) induced GVBD earlier than when injected into the GV or the cytoplasm near the plasma membrane. Fluorescent-labeled beta gamma was retained in the injected area even after GVBD. Injected beta gamma also induced the formation of maturation-promoting factor as well as an increase of histone H1 kinase activity. These results suggest that beta gamma dissociates from alpha-subunit by the stimulation of 1-methyladenine and interacts with a cytoplasmic effector, which results in formation of active cdc2 kinase.  相似文献   

14.
A method for isolating a GTP-binding regulatory protein from starfish oocytes is described. The protein consists of three subunits with molecular weights of 40, 37, and about 8 kDa. It is shown that the 40-kDa subunit has a high GTPase activity and is susceptible to ADP-ribosylation by pertussis toxin. The latter property of this subunit proved to decrease upon its incubation with nonhydrolyzable GTP analogues. These data provide evidence that the plasma membrane of starfish oocytes contains a 40-kDa GTP-binding protein with properties characteristic of the alpha subunit of the inhibitory G i protein. The role of this protein in the transmembrane signal transmission from the 1-methyladenine receptor to intracellular effectors is discussed.  相似文献   

15.
B Eide  P Gierschik  A Spiegel 《Biochemistry》1986,25(21):6711-6715
Rabbits immunized with ADP-ribose chemically conjugated to carrier proteins developed antibodies reactive against guanine nucleotide binding proteins (G proteins) that had been mono-ADP-ribosylated by bacterial toxins. Antibody reactivity on immunoblots was strictly dependent on incubation of substrate proteins with both toxin and NAD and was quantitatively related to the extent of ADP-ribosylation. Gi, Go, and transducin (ADP-ribosylated by pertussis toxin) and elongation factor II (EF-II) (ADP-ribosylated by pseudomonas exotoxin) all reacted with ADP-ribose antibodies. ADP-ribose antibodies detected the ADP-ribosylation of an approximately 40-kilodalton (kDa) membrane protein related to Gi in intact human neutrophils incubated with pertussis toxin and the ADP-ribosylation of an approximately 90-kDa cytosolic protein, presumably EF-II, in intact HUT-102 cells incubated with pseudomonas exotoxin. ADP-ribose antibodies represent a novel tool for the identification and study of G proteins and other substrates for bacterial toxin ADP-ribosylation.  相似文献   

16.
The alpha subunits of Gi (Gi alpha) and Gs (guanine-nucleotide-binding proteins involved in adenylate cyclase inhibition and stimulation, respectively) was ADP-ribosylated by cholera toxin in differentiated HL-60 cell membranes upon stimulation of chemotactic receptors by fMLF (fM, N-formylmethionine). The ADP-ribosylation site of Gi alpha modified by cholera toxin appeared to be different from that modified by pertussis toxin [Iiri, T., Tohkin, M., Morishima, N., Ohoka, Y., Ui, M. & Katada, T. (1989) J. Biol. Chem. 264, 21,394-21,400]. This allowed us to investigate how the two types of ADP-ribosylation influence the function of the signal-coupling protein. The major findings observed in HL-60 cell membranes, where the same Gi alpha molecule was ADP-ribosylated by treatment of the membranes with either toxin, are summarized as follows. (a) More fMLF bound with a high affinity to cholera-toxin-treated membranes than to the control membranes. The high-affinity binding was, however, not observed in pertussis-toxin-treated membranes. (b) Although fMLF stimulated guanine nucleotide binding and GTPase activity in control membranes, stimulation was almost completely abolished in pertussis-toxin-treated membranes. In contrast, fMLF-dependent stimulation of GTPase activity, but not that of guanine nucleotide binding was attenuated in cholera-toxin-treated membranes. (c) Gi alpha, once modified by cholera toxin, still served as a substrate of pertussis-toxin-catalyzed ADP-ribosylation; however, the ADP-ribosylation rate of modified Gi was much lower than that of intact Gi. These results suggested that Gi ADP-ribosylated by cholera toxin was effectively capable of coupling with fMLF receptors, resulting in formation of high-affinity fMLF receptors, and that hydrolysis of GTP bound to the alpha subunit was selectively impaired by its ADP-ribosylation by cholera toxin. Thus, unlike the ADP-ribosylation of Gi by pertussis toxin, cholera-toxin-induced modification would be of great advantage to the interaction of Gi with receptors and effectors that are regulated by the signal-coupling protein. This type of modification might also be a candidate for unidentified G proteins which were less sensitive to pertussis toxin and appeared to be involved in some signal-transduction systems.  相似文献   

17.
Neutrophil guanine nucleotide-binding proteins are important components of receptor-mediated cellular responses such as degranulation, chemotaxis, and superoxide production. Because the cytoplasmic granules of neutrophils serve as an intracellular store of receptors and NADPH oxidase components, we investigated the subcellular distribution of substrates for ADP-ribosylation by both pertussis and cholera toxins. Cholera toxin substrates of Mr 43 and 52 kDa were present only in the plasma membrane fraction. A 39-kDa pertussis toxin substrate was present in the plasma membrane, cytosol, and a specific granule-enriched fraction. There were no substrates for either toxin in the primary granules. Quantitative GTP-gamma-5 binding was localized predominantly to the plasma membrane fraction (47%), but significant portions were found in the specific granule-enriched fractions (13%) and cytosol (34%) as well. Two-dimensional gel electrophoresis and chymotryptic digests of the pertussis toxin substrate from these three subcellular fractions suggested that they are highly homologous. Triton X-114 phase partitioning was used to investigate the hydrophobicity of the toxin substrates. The pertussis toxin substrates in the plasma membrane and granule fractions behaved like integral membrane proteins, whereas the cytosolic substrate partitioned into both lipophilic and aqueous fractions. ADP-ribosylation converted the substrates to a somewhat less lipophilic form. These data suggest that the specific granules or an organelle of similar density serve as an intracellular store of a G protein with a 39-kDa alpha-subunit and that the cytosolic fraction of neutrophils contains free alpha-subunits of the same size.  相似文献   

18.
The stimulation of oocyte maturation by 1-methyladenine in starfish, and by a steroid in frogs, has been proposed to involve G-protein-coupled receptors. To examine whether activation of receptors linked to G(i) or G(z) was sufficient to cause oocyte maturation, we expressed mammalian G(i)- and G(z)-linked receptors in starfish and frog oocytes. Application of the corresponding agonists caused meiosis to resume in the starfish but not the frog oocytes. We confirmed that the receptors were effectively expressed in the frog oocytes by using a chimeric G-protein, G(qi), that converts input from G(i)- and G(z)-linked receptors to a G(q) output and results in a contraction of the oocyte's pigment. These results argue against G(i) or G(z) functioning to cause maturation in frog oocytes. Consistently, maturation-inducing steroids did not cause pigment contraction in frog oocytes expressing G(qi), and G(z) protein was not detectable in frog oocytes. For starfish oocytes, however, our results support the conclusion that G(i) functions in 1-methyladenine signaling and suggest the possibility of using frog oocyte pigment contraction as an assay to identify the 1-methyladenine receptor. To test this concept, we coexpressed G(qi) and a starfish adenosine receptor in frog oocytes and showed that applying adenosine caused pigment contraction.  相似文献   

19.
Recently we demonstrated the presence in calf thymocytes of a GTP-binding protein (G-protein) composed of three polypeptides, 54, 41, and 27 kDa, which was physically and functionally associated with a soluble phosphoinositides-specific phospholipase C (PI-phospholipase C). The properties of this G protein were further investigated with the following results. 1) In addition to the ability to bind [35S]guanosine-5'-[gamma-thio]triphosphate (GTP gamma S), the G-protein exhibited GTPase activity, which was enhanced by Mg2+, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol, but inhibited by sodium cholate, GTP gamma S and F-.2) The 54-kDa polypeptide was ADP-ribosylated by pertussis toxin and also by endogenous membrane-bound ADP-ribosyltransferase, but none of these three polypeptides was ADP-ribosylated by cholera toxin. 3) The G-protein did not cross-react with either anti-rat brain alpha 1 (alpha-subunit of inhibitory G-protein, G1), alpha 0 (alpha-subunit of other G1-like G-protein, G0) or beta gamma antibodies. 4) Incubation of this G Protein with GTP gamma S caused dissociation of the three polypeptides. 5) The 27 kDa polypeptide showed GTP-binding activity and enhanced the phosphatidylinositol 4,5-bisphosphate hydrolysis by purified PI-phospholipase C. These results suggest that the PI-phospholipase C-associated G-protein in calf thymocytes may be a novel one and that it is involved in the regulation of PI-phospholipase C activity.  相似文献   

20.
The in vitro effects of 2-4-dinitrophenol (DNP) on spawning and follicular and oocyte maturation in starfish ovaries and its various cellular components were investigated. Spawning and oocyte and follicular maturation induced by starfish gonadotropin radial nerve factor (RNF) in isolated ovarian fragments were all inhibited by appropriate doses of DNP. DNP inhibits processes which occur shortly after addition of the gonadotropin; in ovarian fragments insensitivity to DNP inhibition occurred shortly after addition of RNF but prior to initiation of spawning. Spontaneous follicular and oocyte maturation which occurred following release of ovarian follicles into sea water was prevented by DNP. In non-spontaneously maturing follicles released from the ovary, DNP inhibited both follicle and oocyte maturation induced by the secondary stimulator of spawning and maturation, 1-methyladenine (1-MA). DNP also inhibited 1-MA induced meiotic maturation in isolated immature oocytes incubated in the absence of follicle cells. Inhibition of oocyte maturation was not associated with inhibition of 3H-1-MA incorporation by isolated oocytes. Immature oocytes incubated in the presence of DNP underwent maturation following washing and subsequent exposure to 1-MA. Immature oocytes initially exposed to both 1-MA and DNP, however, showed decreased maturation responsiveness following washing and re-exposure to 1-MA. The results suggest that the inhibitory effects of DNP on spawning and oocyte maturation are the result of direct effects on the oocytes and possibly other cells and tissues within the ovary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号