首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Transcriptional transgene silencing and chromatin components   总被引:19,自引:0,他引:19  
  相似文献   

6.
A great amount of copy number variations (CNVs) are identified in the human genome. Most of them are neutral; nevertheless, the role of CNVs in the pathogenesis of hereditary diseases is still significant. Especially, this is important for neuropsychiatric disorders, such as intellectual disability and autism. When analyzing the CNV-associated diseases, the controversial question is to distinguish the pathogenic CNVs among common polymorphic variants and to predict the disease risk in other children of the family. Unfortunately, the mechanisms of phenotypic expression and incomplete penetrance of CNVs remain largely unknown. Currently, incomplete penetrance and variable expressivity of CNVs are attributed mainly to allelic interaction of different genetic variations. However, epigenetic mechanisms of gene expression regulation in the context of structural variation of the genome are poorly explored. It is possible that epigenetic modifications of the genome regions with CNVs may underlie the understanding of ways of phenotypic manifestations of structural variations in the human genome.  相似文献   

7.
Inheritance of epigenetic chromatin silencing   总被引:1,自引:0,他引:1  
Maintenance of alternative chromatin states through cell divisions pose some fundamental constraints on the dynamics of histone modifications. In this paper, we study the systems biology of epigenetic inheritance by defining and analyzing general classes of mathematical models. We discuss how the number of modification states involved plays an essential role in the stability of epigenetic states. In addition, DNA duplication and the consequent dilution of marked histones act as a large perturbation for a stable state of histone modifications. The requirement that this large perturbation falls into the basin of attraction of the original state sometimes leads to additional constraints on effective models. Two such models, inspired by two different biological systems, are compared in their fulfilling the requirements of multistability and of recovery after DNA duplication. We conclude that in the presence of multiple histone modifications that characterize alternative epigenetic stable states, these requirements are more easily fulfilled.  相似文献   

8.
9.
10.
Current biological models of epigenetic switches built on chromatin modifications lead to strong constraints on the repertoire of dynamic behaviors for the system. We use the structure of the bifurcation diagram of the underlying dynamical system to explain the existing single cell data in silencing by the SIR system in yeast.  相似文献   

11.
12.
《Epigenetics》2013,8(5):386-391
Epigenetic modifications play a crucial role in developmental gene regulation. These modifications, being reversible, provide a layer of information over and above the DNA sequence, that has plasticity and leads to the generation of cell type-specific epigenomes during cellular differentiation. In almost all higher eukaryotes, the oocyte provides not only its cytoplasm, mitochondria, maternally deposited RNA and proteins but also an epigenetic component in the form of DNA and histone-modifications. During spermeiogenesis however, most of the histones are replaced by protamines, leading to a loss of the epigenetic component. The sperm is, therefore, viewed as a passive carrier of the paternal genome with a disproportionate, lower epigenetic contribution except for DNA methylation, to the next generation. A recent study overturns this view by demonstrating a locus-specific retention of histones, with specific modifications in the sperm chromatin at the promoters of developmentally important genes. This programmed retention of epigenetic marks with a role in embryonic development is suggested to offset, in some measure, the dominant maternal effect. This new finding helps in addressing the question of epigenetic transmission of environmental and ‘lifestyle’ experiences across generations and raises the question of ‘parental conflict’ at the loci that may be differentially marked.  相似文献   

13.
Heritable domains of generalized repression are a common feature of eukaryotic chromosomes and involve the assembly of DNA into a silenced chromatin structure. Sir2, a conserved protein required for silencing in yeast, has recently been shown to couple histone deacetylation to cleavage of a high-energy bond in nicotinamide adenine dinucleotide (NAD) and the synthesis of a novel product, O-acetyl-ADP-ribose. The deacetylase activity provides a direct link between Sir2 and the hypoacetylated state of silent chromatin. However, the unusual coupling of deacetylation to cleavage and synthesis of other bonds raises the possibility that deacetylation is not the only crucial function of Sir2.  相似文献   

14.
The Notch signaling pathway drives proliferation, differentiation, apoptosis, cell fate choices and maintenance of stem cells during embryogenesis and in self-renewing tissues of the adult. In addition, aberrant Notch signaling has been implicated in several tumors, where Notch can function both as an oncogene or a tumor-suppressor gene, depending on the context. This Extra View aims to review what is currently known about Notch signaling, in particular in gastrointestinal tumors, providing a summary of our data on Notch1 signaling in gastric cancer with results obtained in colorectal cancer (CRC). We have already reported that the epigenetic regulation of the Notch ligand DLL1 controls Notch1 signaling activation in gastric cancer, and that Notch1 inhibition is associated with the diffuse type of gastric cancer. Here, we describe additional data showing that in CRC cell lines, unlike gastric cancer, DLL1 expression is not regulated by promoter methylation. Moreover, in CRC, Notch1 receptor is not affected by any mutation. These data suggest a different regulation of Notch1 signaling between gastric cancer and CRC.  相似文献   

15.
Tissue inhibitor of matrix metalloprotease 4 (TIMP4) is endogenously one of the key modulators of matrix metalloprotease 9 (MMP9) and we have reported earlier that cardiac specific TIMP4 instigates contractility and helps in differentiation of cardiac progenitor cells. Although studies show that the expression of TIMP4 goes down in heart failure but the mechanism is unknown. This study aims to determine the mechanism of silencing of TIMP4 in heart failure progression created by aorta‐vena cava (AV) fistula. We hypothesize that there is epigenetic silencing of TIMP4 in heart failure. To validate this hypothesis, we created heart failure model by creating AV fistula in C57BL/6 mice and looked into the promoter methylation (methylation specific PCR, high resolution melting, methylation sensitive restriction enzyme and Na bisulphite treatment followed by sequencing), histone modification (ChIP assay) and microRNAs that regulate TIMP4 (mir122a) and MMP9 (mir29b and mir455‐5p). The physiological parameters in terms of cardiac function after AV fistula were assessed by echocardiography. We observed that there are 7 CpG islands in the TIMP4 promoter which get methylated during the progression of heart failure which leads to its epigenetic silencing. In addition, the up‐regulated levels of mir122a in part, contribute to regulation of TIMP4. Consequently, MMP9 gets up‐regulated and leads to cardiac remodeling. This is a novel report to explain the epigenetic silencing of TIMP4 in heart failure.  相似文献   

16.
In several plant systems expression of structurally intact genes may be silenced epigenetically when a transgenic construct increases the copy number of DNA sequences. Here we report epigenetic silencing inArabidopsis lines containing transgenic inserts of defined genetic structure, all at the same genomic locus. These comprise an allelic series that includes a single copy of the primary insert, which carries repeated drug resistance transgenes, and a set of its derivatives, which as a result of recombination within the insert carry different numbers and alleles of resistance genes. Although the drug resistance genes remained intact, both the primary and some recombinant lines nevertheless segregated many progeny that were partly or fully drug-sensitive because of silencing. As in other systems silencing was reversible, and correlated with decreased steady-state mRNA and increased DNA methylation. Each different number and combination of genes, on the same or different (i.e., homologous) chromosomes, conditioned its own idiosyncratic segregation pattern. Strikingly, lines with a single gene segregated only a few slightly drug-sensitive progeny whereas multi-gene lines segregated many highly sensitive progeny, indicating dependence of silencing at this locus on repeated sequences. This argues strongly against explanations based on antisense RNA, but is consistent with explanations based on ectopic DNA pairing. One possibility is that silencing reflects the interaction of paired homologous DNA with flanking heterologous DNA, which induces condensation of chromatin into a non-transcribable state.  相似文献   

17.
The Notch signaling pathway drives proliferation, differentiation, apoptosis, cell fate choices and maintenance of stem cells during embryogenesis and in self-renewing tissues of the adult. In addition, aberrant Notch signaling has been implicated in several tumors, where Notch can function both as an oncogene or a tumor-suppressor gene, depending on the context.

This Extra View aims to review what is currently known about Notch signaling, in particular in gastrointestinal tumors, providing a summary of our data on Notch1 signaling in gastric cancer with results obtained in colorectal cancer (CRC).

We have already reported that the epigenetic regulation of the Notch ligand DLL1 controls Notch1 signaling activation in gastric cancer, and that Notch1 inhibition is associated with the diffuse type of gastric cancer. Here, we describe additional data showing that in CRC cell lines, unlike gastric cancer, DLL1 expression is not regulated by promoter methylation. Moreover, in CRC, Notch1 receptor is not affected by any mutation. These data suggest a different regulation of Notch1 signaling between gastric cancer and CRC.  相似文献   

18.
Gene duplication is commonly regarded as the main evolutionary path toward the gain of a new function. However, even with gene duplication, there is a loss-versus-gain dilemma: most newly born duplicates degrade to pseudogenes, since degenerative mutations are much more frequent than advantageous ones. Thus, something additional seems to be needed to shift the loss versus gain equilibrium toward functional divergence. We suggest that epigenetic silencing of duplicates might play this role in evolution. This study began when we noticed in a previous publication (Lynch M, Conery JS [2000] Science 291:1151–1155) that the frequency of functional young gene duplicates is higher in organisms that have cytosine methylation (H. sapiens, M. musculus, and A. thaliana) than in organisms that do not have methylated genomes (S. cerevisiae, D. melanogaster, and C. elegans). We find that genome data analysis confirms the likelihood of much more efficient functional divergence of gene duplicates in mammals and plants than in yeast, nematode, and fly. We have also extended the classic model of gene duplication, in which newly duplicated genes have exactly the same expression pattern, to the case when they are epigenetically silenced in a tissue- and/or developmental stage-complementary manner. This exposes each of the duplicates to negative selection, thus protecting from pseudogenization. Our analysis indicates that this kind of silencing (i) enhances evolution of duplicated genes to new functions, particularly in small populations, (ii) is quite consistent with the subfunctionalization model when degenerative but complementary mutations affect different subfunctions of the gene, and (iii) furthermore, may actually cooperate with the DDC (duplication– degeneration–complementation) process. Dedicated to the memory of Susumu Ohno  相似文献   

19.
20.
In addition to their normal developmental processes, plants have evolved complex genetic and epigenetic regulatory mechanisms to cope with various environmental stresses. It has been shown that both DNA methylation and histone modifications are involved in DNA damage response to various types of stresses. In this study, we focused on the involvement of two mutagenic agents, chemical (maleic acid hydrazide; MH) and physical (gamma rays), on the global epigenetic modifications of chromatin in barley. Our results indicate that both mutagens strongly influence the level of histone methylation and acetylation. Moreover, we found that gamma irradiation, in contrast to MH, has a more robust influence on the DNA methylation level. This is the first study that brings together mutagenic treatment along with its impact at the level of epigenetic modifications examined using the immunohistochemical method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号