首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yeast cells with a nonsense adenylate cyclase mutation, cyr1-3, required cyclic AMP for growth. This phenotype was suppressed by the byc1 mutation; however, cyr1-3 bcy1 cells produced no detectable level of adenylate cyclase or cyclic AMP. On induction, the bcy1 and cyr1-3 bcy1 mutant cells produced the same levels of galactokinase and alpha-D-glucosidase as did the wild-type cells and fourfold-higher levels of invertase. Since galactokinase synthesis was severely repressed by glucose in the constitutive GAL81 mutants, irrespective of the cyr1-3 bcy1 genotype, cyclic AMP may not be involved in catabolite repression.  相似文献   

2.
Cyclic AMP as an antagonist of catabolite repression in Escherichia coli   总被引:23,自引:0,他引:23  
  相似文献   

3.
4.
5.
6.
A selection system has been devised for isolating hexokinase PII structural gene mutants that cause defects in carbon catabolite repression, but retain normal catalytic activity. We used diploid parental strains with homozygotic defects in the hexokinase PI structural gene and with only one functional hexokinase PII allele. Of 3,000 colonies tested, 35 mutants (hex1r) did not repress the synthesis of invertase, maltase, malate dehydrogenase, and respiratory enzymes. These mutants had additional hexokinase PII activity. In contrast to hex1 mutants (Entian et al., Mol. Gen. Genet. 156:99-105, 1977; F.K. Zimmermann and I. Scheel, Mol. Gen. Genet. 154:75-82, 1977), which were allelic to structural gene mutants of hexokinase PII and had no catalytic activity (K.-D. Entian, Mol. Gen. Gent. 178:633-637, 1980), the hex1r mutants sporulated hardly at all or formed aberrant cells. Those ascospores obtained were mostly inviable. As the few viable hex1r segregants were sterile, triploid cells were constructed to demonstrate allelism between hex1r mutants and hexokinase PII structural gene mutants. Metabolite concentrations, growth rate, and ethanol production were the same in hex1r mutants and their corresponding wild-type strains. Recombination of hexokinase and glucokinase alleles gave strains with different specific activities. The defect in carbon catabolite repression was strongly associated with the defect in hexokinase PII and was independent of the glucose phosphorylating capacity. Hence, a secondary effect caused by reduced hexose phosphorylation was not responsible for the repression defect in hex1 mutants. These results, and those with the hex1r mutants isolated, strongly supported our earlier hypothesis that hexokinase PII is a bifunctional enzyme with (i) catalytic activity and (ii) a regulatory component triggering carbon catabolite repression (Entian, Mol. Gen. Genet. 178:633-637, 1980; K.-D. Entian and D. Mecke, J. Biol. Chem. 257:870-874, 1982).  相似文献   

7.
Cultures of Escherichia coli K-12 grown on glucose or gluconate under aerobic conditions exhibited catabolite repression of beta-galactosidase synthesis. Depression occurred when these cultures were subjected to anaerobic shock. These states of repression and depression were found to be associated with low and high differential rates of cyclic AMP synthesis, respectively. This observation is consistent with the view that cyclic AMP plays a central role in the catabolite repression phenomenon. We report here, however, that identical stages of repression and derepression occur in mutant strains possessing cya crp(Csm) genotypes and therefore unable to synthesize cyclic AMP. These results suggest that cyclic AMP is not the sole regulator involved in catabolite repression.  相似文献   

8.
I L Glukhov  I Fodor 《FEBS letters》1984,177(1):115-118
The primary structure of bacteriophage lambda DNA has been searched for the presence of consensus CAP binding sites. Four putative CAP binding sites have been found on the lambda genome, indicating that the catabolite gene activation system of E. coli may be directly involved in the regulation of lambda development. Molecular mechanisms of putative cAMP-CAP-mediated stimulation of lysogenic and lytic responses are discussed.  相似文献   

9.
Previous observations concerning the ability of the Bacillus subtilis bacteriophages SP10 and PMB12 to suppress mutations in spo0J and to make wild-type sporulation catabolite resistant suggested that spo0J had a role in catabolite repression of sporulation. This suggestion was supported in the present report by the ability of the catabolite-resistant sporulation mutation crsF4 to suppress a Tn917 insertion mutation of the B. subtilis spo0J locus (spo0J::Tn917 omega HU261) in medium without glucose. Although crsF4 and SP10 made wild-type B. subtilis sporulation catabolite resistant, neither crsF4 nor SP10 caused a mutant with spo0J::Tn917 omega HU261 to sporulate in medium with glucose. Sequencing the spo0J locus revealed an open reading frame that was 179 codons in length. Disruption of the open reading frame resulted in a sporulation-negative (Spo-) phenotype that was similar to those of other spo0J mutations. Analysis of the deduced amino acid sequence of the spo0J locus indicated that the spo0J gene product contains an alpha-helix-turn-alpha-helix unit similar to the motif found in lambda Cro-like DNA-binding proteins.  相似文献   

10.
11.
Expression of the Saccharomyces cerevisiae arginase (CAR1) gene is regulated by induction and nitrogen catabolite repression (NCR). Arginine was demonstrated to be the native inducer. CAR1 sensitivity to NCR has long been accepted to be accomplished through a negative control mechanism, and cis-acting sites for it have been hypothesized. In search of this negatively acting site, we discovered that CAR1 sensitivity to NCR derives from regulated inducer (arginine) exclusion. The route of catabolic entry of arginine into the cell, the general amino acid permease (GAP1), is sensitive to NCR. However, CAR1 expression in the presence of sufficient intracellular arginine is NCR insensitive.  相似文献   

12.
13.
Growth in the presence of glucose, even under highly aerobic conditions, significantly reduced the activities of three tricarboxylic acid cycle enzymes, citrate synthetase, alpha-ketoglutarate dehydrogenase, and malate dehydrogenase, in suicidal but not nonsuicidal Aeromonas strains. Pyruvate dehydrogenase activity, however, was significantly increased. The activities of all of the enzymes, as well as the glucose-mediated increase in acetic acid production, were shown to be regulated by catabolite repression. The regulator protein is the same one which regulates the utilization of several sugars.  相似文献   

14.
15.
Entry into mitosis requires activation of cdc2 kinase brought on by its association with cyclin B, phosphorylation of the conserved threonine (Thr-167 in Schizosaccharomyces pombe) in the T loop, and dephosphorylation of the tyrosine residue at position 15. Exit from mitosis, on the other hand, is induced by inactivation of cdc2 activity via cyclin destruction. It has been suggested that in addition to cyclin degradation, dephosphorylation of Thr-167 may also be required for exit from the M phase. Here we show that Saccharomyces cerevisiae cells expressing cdc28-E169 (a CDC28 allele in which the equivalent threonine, Thr-169, has been replaced by glutamic acid) are able to degrade mitotic cyclin Clb2, inactivate the Cdc28/Clb2 kinase, and disassemble the anaphase spindles, suggesting that they exit mitosis normally. The cdc28-E169 allele is active with respect to its mitotic functions, since it complements the mitosis-defective cdc28-1N allele. Whereas replacement of Thr-169 with serine affects neither Start nor the mitotic activity of Cdc28, replacement with glutamic acid or alanine renders Cdc28 inactive for Start-related functions. Coimmunoprecipitation experiments show that although Cdc28-E169 associates with mitotic cyclin Clb2, it fails to associate with the G1 cyclin Cln2. Thus, an unmodified threonine at position 169 in Cdc28 is important for interaction with G1 cyclins. We propose that in S. cerevisiae, dephosphorylation of Thr-169 is not required for exit from mitosis but may be necessary for commitment to the subsequent division cycle.  相似文献   

16.
The alpha 2 protein, the product of the MAT alpha 2 cistron, represses various genes specific to the a mating type (alpha 2 repression), and when combined with the MATa1 gene product, it represses MAT alpha 1 and various haploid-specific genes (a1-alpha 2 repression). One target of a1-alpha 2 repression is RME1, which is a negative regulator of a/alpha-specific genes. We have isolated 13 recessive mutants whose a1-alpha 2 repression is defective but which retain alpha 2 repression in a genetic background of ho MATa HML alpha HMRa sir3 or ho MAT alpha HMRa HMRa sir3. These mutations can be divided into three different classes. One class contains a missense mutation, designated hml alpha 2-102, in the alpha 2 cistron of HML, and another class contains two mat alpha 2-202, in the MAT alpha locus. These three mutants each have an amino acid substitution of tyrosine or acid substitution of tyrosine or phenylalanine for cysteine at the 33rd codon from the translation initiation codon in the alpha 2 cistron of HML alpha or MAT alpha. The remaining 10 mutants make up the third class and form a single complementation group, having mutations designated aar1 (a1-alpha 2 repression), at a gene other than MAT, HML, HMR, RME1, or the four SIR genes. Although a diploid cell homozygous for the aarl and sir3 mutations and for the MATa, HML alpha, and HMRa alleles showed alpha mating type, it could sporulate and gave rise to asci containing four alpha mating-type spores. These facts indicate that the domain for alpha2 repression is separable from that for a1-alpha2 protein interaction or complex formation in the alpha2 protein and that an additional regulation gene, AAR1, is associated with the a1-alpha2 repression of the alpha1 cistron and haploid-specific genes.  相似文献   

17.
Ultraviolet A (UVA) irradiation of the dorsal skin of mice reduced the contact hypersensitivity (CHS) response and the density of epidermal Langerhans cells (LC). The roles of nitric oxide (NO) and reactive oxygen species (ROS) in these biological effects of UVA were investigated. Topical application of N(G)-monomethyl-L-arginine acetate, an inhibitor of NO production, 2,2'-dipyridyl, an iron chelater, or 4-hydroxy-tempo, a superoxide dismutase mimicking agent, inhibited UVA-induced suppression of the CHS response. N(G)-monomethyl-L-arginine acetate but not the ROS inhibitors prevented UVA from reducing LC numbers in the epidermis. This suggests that NO but not ROS produced in response to UVA mediates a depletion of LC from the epidermis, probably by signaling these cells to migrate from the skin. This could be responsible for UVA-induced immunosuppression. UVA-induced ROS can also cause immunosuppression, but by a different mechanism. Agents that inhibit or modulate NO or ROS production may be useful for preventing damage caused by the UVA component of sunlight to the skin immune system.  相似文献   

18.
BACKGROUND: Recently, in vivo gene transfer with electroporation (electro-gene transfer) has emerged as a leading technology for developing nonviral gene therapies and nucleic acid vaccines. The widely hypothesized mechanism is that electroporation induces structural defects in the membrane and provides an electrophoretic force to facilitate DNA crossing the permeabilized membrane. In this study, we have designed a device and experiments to test the hypothesis. METHODS: In this study, we have designed a device that alternates the polarity of the applied electric field to elucidate the mechanism of in vivo electro-gene transfer. We also designed experiments to challenge the theory that the low-voltage (LV) pulses cannot permeabilize the membrane and are only involved in DNA electrophoresis, and answer the arguments that (1) the reversed polarity pulses can cause opposing sides of the cell membrane to become permeabilized and provide the electrophoresis for DNA entry; or (2) once DNA enters cytoplasmic/endosomal compartments after electroporation, it may bind to cellular entities and might not be reversibly extracted. Thus a gradual buildup of the DNA in the cell still seems quite possible even under the condition of the rapid reversal of polarity. RESULTS: Our results indicate that electrophoresis does not play an important role in in vivo electro-gene transfer. CONCLUSIONS: This study provides new insights into the mechanism of electro-gene transfer, and may allow the definition of newer and more efficient conditions for in vivo electroporation.  相似文献   

19.
Nutrient conditions which trigger sporulation also activate expression of the Bacillus licheniformis alpha-amylase gene, amyL. Glucose represses both spore formation and expression of amyL. A fusion was constructed between the B. licheniformis alpha-amylase regulatory and 5' upstream sequences (amyRi) and the Escherichia coli lacZ structural gene to identify sequences involved in mediating temporal activation and catabolite repression of the amyL gene in Bacillus subtilis. amyRi-directed expression in a variety of genetic backgrounds and under different growth conditions was investigated. A 108-base-pair sequence containing an inverted repeat sequence, ribosome-binding site, and 26 codons of the structural gene was sufficient to mediate catabolite repression of amyL. spo0 mutations (spo0A, spo0B, spo0E, and spo0H) had no significant effect on temporal activation of the gene fusion when the recipient strains were grown in nonrepressing medium. However, in glucose-grown cultures the presence of a spo0A mutation resulted in more severe repression of amyRi-lacZ. In contrast, a spo0H mutation reduced the repressive effect of glucose on amyRi-lacZ expression. The spo0A effect was relieved by an abrB mutation. Initiation of sporulation is not a prerequisite for either temporal activation or derepression of alpha-amylase synthesis. Mutations causing resistance to catabolite repression in B. subtilis GLU-47, SF33, WLN30, and WLN104 also relieved catabolite repression of amyRi-lacZ.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号