首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Thirty percent of human breast cancers have amplification of ERBB2, often in conjunction with mutations in p53. The most common p53 mutation in human breast cancers is an Arg-to-His mutation at codon 175, an allele that functions in a dominant oncogenic manner in tumorigenesis assays and is thus distinct from loss of p53. Transgenic mice expressing mouse mammary tumor virus-driven neu transgene (MMTV-neu) develop clonal mammary tumors with a latency of 234 days, suggesting that other events are necessary for tumor development. We have examined the role of mutations in p53 in tumor development in these mice. We have found that 37% of tumors arising in these mice have a missense mutations in p53. We have directly tested for cooperativity between neu and mutant p53 in mammary tumorigenesis by creating bitransgenic mice carrying MMTV-neu and 172Arg-to-His p53 mutant (p53-172H). In these bitransgenic mice, tumor latency is shortened to 154 days, indicating strong cooperativity. None of the nontransgenic mice or the p53-172H transgenic mice developed tumors within this time period. Tumors arising in the p53-172H/neu bitransgenic mice were anaplastic and aneuploid and exhibited increased apoptosis, in distinction to tumors arising in p53-null mice, in which apoptosis is diminished. Further experiments address potential mechanisms of cooperativity between the two transgenes. In these bitransgenic mice, we have recapitulated two common genetic lesions that occur in human breast cancer and have shown that p53 mutation is an important cooperating event in neu-mediated oncogenesis.  相似文献   

3.
4.
Tp53 is the most commonly mutated tumour-suppressor gene in human cancers. In addition to the loss of tumour-suppression function, some missense mutants gain novel oncogenic activities. To elucidate the nature of the gain of function, we introduced the most common p53 cancer mutations (R248W and R273H) independently into the humanized p53 knock-in (HUPKI) allele in mice. Tumour-suppressor functions of p53 are abolished in p53-mutant mice. Several lines of evidence further indicate gain-of-function of p53 mutants in promoting tumorigenesis. p53(R248W) mice rapidly succumb to certain types of cancers not commonly observed in p53(-/-) mice. Interchromosomal translocations, a type of genetic instability rarely observed in p53(-/-) cells, are readily detectable in p53-mutant pre-tumor thymocytes. Although normal in p53(-/-) mouse cells, the G(2)-M checkpoint is impaired in p53-mutant cells after DNA damage. These acquired oncogenic properties of mutant p53 could be explained by the findings that these p53 mutants interact with the nuclease Mre11 and suppress the binding of the Mre11-Rad50-NBS1 (MRN) complex to DNA double-stranded breaks (DSBs), leading to impaired Ataxia-telangiectasia mutated (ATM) activation. Therefore, p53 gain-of-function mutants promote tumorigenesis by a novel mechanism involving active disruption of critical DNA damage-response pathways.  相似文献   

5.
Lai JC  Cheng YW  Goan YG  Chang JT  Wu TC  Chen CY  Lee H 《DNA Repair》2008,7(8):1352-1363
Methylation of the O(6)-methylguanine-DNA-methyltransferase (MGMT) promoter is associated with G:C to A:T transitions in the p53 gene in various human cancers, including lung cancer. In tumors with p53 mutation, MGMT promoter methylation is more common in advanced tumors than in early tumors. However, in tumors with wild-type p53, MGMT promoter methylation is independent of tumor stage. To elucidate whether p53 participates in MGMT promoter methylation, we engineered three cell models: A549 cells with RNA interference (RNAi)-mediated knockdown of p53, and p53 null H1299 cells transfected with either wild-type p53 (WT-p53) or mutant-p53 (L194R, and R249S-p53). Knockdown of endogenous p53 increased MGMT promoter methylation in A549 cells, and transient expression of WT-p53 in p53 null H1299 cells diminished MGMT promoter methylation, whereas the MGMT promoter methylation status were unchanged by expression of mutant-p53. Previous work showed that p53 modulates DNA-methyltransferase 1 (DNMT1) expression; we additionally examined chromatin remodeling proteins expression levels of histone deacetylase 1 (HDAC1). We found that p53 knockdown elevated expression of both DNMT1 and HDAC1 in A549 cells. Conversely, expressing WT-p53 in p53 null H1299 cells reduced DNMT1 and HDAC1 expression, but the reduction of both proteins was not observed in expressing mutant-p53 H1299 cells. CHIP analysis further showed that DNMT1 and HDAC1 binding to the MGMT promoter was increased by MGMT promoter methylation and decreased by MGMT promoter demethylation. In conclusion, MGMT promoter methylation modulated by p53 status could partially promote p53 mutation occurrence in advanced lung tumors.  相似文献   

6.
Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) have evolved as sensitive tools for anatomic and metabolic evaluation of breast cancer. In vivo MRS studies have documented the presence of choline containing compounds (tCho) as a reliable biochemical marker of malignancy and also useful for monitoring the tumor response to therapy. Recent studies on the absolute quantification of tCho are expected to provide cut-off values for discrimination of various breast pathologies. Addition of MRS investigation was also reported to increase the specificity of MRI. Further, ex vivo and in vitro MRS studies of intact tissues and tissue extracts provided several metabolites that were not be detected in vivo and provided insight into underlying biochemistry of the disease processes. In this review, we present briefly the role of various 1H MRS methods used in breast cancer research and their potential in relation to diagnosis, monitoring of therapeutic response and metabolism.  相似文献   

7.
8.
The effect of an analogue of cAMP on the uptake and metabolism of choline in the heart was studied in isolated cardiac cells. The cells were obtained from 7-day-old chick embryos and maintained in culture. The effects of cAMP were studied using the dibutyryl cAMP analogue and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. After a 2-h incubation with [3H]choline, about 85% of the label was recovered in phosphocholine, with most of the rest in phospholipid. During a subsequent chase incubation, [3H]phosphocholine was transferred to phosphatidylcholine with little accumulation in CDP-choline. This suggests the rate-limiting step for the conversion of phosphocholine to phosphatidylcholine in these cells is the synthesis of CDP-choline. cAMP decreased the incorporation of choline into phosphatidylcholine, but did not change the flux of metabolites through the step catalyzed by CTP:phosphocholine cytidylyltransferase. cAMP had little effect on choline uptake at low (1-25 microM) extracellular choline concentrations, but significantly (p less than 0.05) decreased choline uptake at higher (37.5-50 microM) extracellular choline concentrations. Thus, cardiac cells take up and metabolize choline to phosphocholine, with CTP:phosphocholine cytidylyltransferase being the rate-limiting step in phosphatidylcholine biosynthesis. cAMP decreases [3H]choline uptake and its subsequent incorporation into phosphocholine and phospholipid. However, the metabolism of choline within the cell is unaffected.  相似文献   

9.
Mutation analysis of p53 in ovarian tumors by DHPLC   总被引:5,自引:0,他引:5  
Up to now, ovarian carcinomas represent a major health problem among female cancers because they are the leading cause of death from gynecological malignancy. A high proportion of these tumors selects for mutations in the p53 gene. There is evidence that inactivation of the p53 protein could indicate poor prognosis and chemoresistance of patients. To set up a fast and sensitive test for p53 defects in tumor tissues, we analyzed ovarian cancer cells by denaturing high-performance liquid chromatography (DHPLC). A primer set spanning the whole coding region of p53 with seven fragments was designed and appropriate heteroduplex detection in DHPLC analysis was elaborated. The analysis of 45 ovarian tumor specimens yielded 17 genetic alterations (38%) occurring exclusively in the malignant tissue of the patients. In addition, frequent polymorphisms present in normal compared to tumor tissue could serve as a tool for the rapid identification of loss of heterozygosity (LOH) in the tumor. We observed that LOH in intron 2 or 3 correlated well with a lack of one allele in mutated fragments. In conclusion, DHPLC screening appears to be a sensitive and effective test for genetic alterations in tumors with p53 involvement. Since p53 mutations point to a poor prognosis state in several cancers, a fast screening of tumor material for genetic variations may have implications for further individual treatment of patients.  相似文献   

10.
11.
Skeletal muscle injury is often assessed by clinical findings (history, pain, tenderness, strength loss), by imaging, or by invasive techniques. The purpose of this work was to determine if in vivo proton magnetic resonance spectroscopy ((1)H MRS) could reveal metabolic changes in murine skeletal muscle after contraction-induced injury. We compared findings in the tibialis anterior muscle from both healthy wild-type (WT) muscles (C57BL/10 mice) and dystrophic (mdx mice) muscles (an animal model for human Duchenne muscular dystrophy) before and after contraction-induced injury. A mild in vivo eccentric injury protocol was used due to the high susceptibility of mdx muscles to injury. As expected, mdx mice sustained a greater loss of force (81%) after injury compared with WT (42%). In the uninjured muscles, choline (Cho) levels were 47% lower in the mdx muscles compared with WT muscles. In mdx mice, taurine levels decreased 17%, and Cho levels increased 25% in injured muscles compared with uninjured mdx muscles. Intramyocellular lipids and total muscle lipid levels increased significantly after injury but only in WT. The increase in lipid was confirmed using a permeable lipophilic fluorescence dye. In summary, loss of torque after injury was associated with alterations in muscle metabolite levels that may contribute to the overall injury response in mdx mice. These results show that it is possible to obtain meaningful in vivo (1)H MRS regarding skeletal muscle injury.  相似文献   

12.
TP53 is the most frequently mutated gene in cancers. Mutations lead to loss of p53 expression or expression of a mutant protein. Mutant p53 proteins commonly lose wild-type function, but can also acquire novel functions in promoting metastasis and chemoresistance. Previously, we uncovered a role for Rab-coupling protein (RCP) in mutant p53-dependent invasion. RCP promotes endosomal recycling and signalling of integrins and receptor tyrosine kinases. In a screen to identify novel RCP-interacting proteins, we discovered P-glycoprotein (P-gp). Thus, we hypothesised that mutant p53 could promote chemoresistance through RCP-dependent recycling of P-gp. The interaction between RCP and P-gp was verified endogenously and loss of RCP or mutant p53 rendered cells more sensitive to cisplatin and etoposide. In mutant p53 cells we detected an RCP-dependent delivery of P-gp to the plasma membrane upon drug treatment and decreased retention of P-gp substrates. A co-localisation of P-gp and RCP was seen in mutant p53 cells, but not in p53-null cells upon chemotherapeutic exposure. In conclusion, mutant p53 expression enhanced co-localisation of P-gp and RCP to allow for rapid delivery of P-gp to the plasma membrane and increased resistance to chemotherapeutics.Subject terms: Tumour-suppressor proteins, Preclinical research  相似文献   

13.
Individuals with Li-Fraumeni syndrome carry inherited mutations in the p53 tumor suppressor gene and are predisposed to tumor development. To examine the mechanistic nature of these p53 missense mutations, we generated mice harboring a G-to-A substitution at nucleotide 515 of p53 (p53+/515A) corresponding to the p53R175H hot spot mutation in human cancers. Although p53+/515A mice display a similar tumor spectrum and survival curve as p53+/- mice, tumors from p53+/515A mice metastasized with high frequency. Correspondingly, the embryonic fibroblasts from the p53515A/515A mutant mice displayed enhanced cell proliferation, DNA synthesis, and transformation potential. The disruption of p63 and p73 in p53-/- cells increased transformation capacity and reinitiated DNA synthesis to levels observed in p53515A/515A cells. Additionally, p63 and p73 were functionally inactivated in p53515A cells. These results provide in vivo validation for the gain-of-function properties of certain p53 missense mutations and suggest a mechanistic basis for these phenotypes.  相似文献   

14.
Steady-state uptake of choline by Lettre-Ehrlich tumor cells in vitro, resulting in cell-to-medium ratios of 10 or more, is significantly increased by 0.2-1.0 mM Ca++ as well as by dipalmitoyl phosphatidyl choline multilamellar liposomes + Ca++. The increases occur in spite of a decrease in carrier affinity, as indicated by the Km, and therefore result either from increased carrier velocity or utilization of new carriers. About half of the labelled choline which is taken up is firmly bound to cells. That label which freely leaves cells is phosphocholine, thus, these cells utilize choline mainly in phospholipid synthesis. Choline and nitrogen mustard (HN2) share a plasma membrane carrier but the intracellular distribution of HN2 into DNA, RNA and protein, contrasts with that of choline, into phospholipid.  相似文献   

15.
Down-regulation of p53 expression has been found in a broad range of human cancers and cell proliferation disorders, indicating that p53 plays a key role in cell cycle regulation and tumor suppression. In our current study, we transfected human embryonic lung fibroblast (HELF) cells with pcDNA3-wild-type p53 (pcDNA3-wtp53) plasmid, or pcDNA3-H179Y-mutated p53 (pcDNA3-mtp53) plasmid that mimics the mutation found in some human lung tumors, and further studied the role of p53 in the regulation of cell proliferation. Over expression of wild-type p53 caused cell cycle arrest at G1 phase with reduced cell size, decreased expression of cyclin D3, cyclin E, Cdk2 and Cdk4, and increased expression of p21. In contrast, over expression of H179Y-mutant p53 promoted G1 to S phase transition with enlarged cell size and increased cyclin A1 and Cdk4 expression in HELF cells. These results indicate that mutation at the p53 H179Y residue up-regulates cyclin A1 and Cdk4 expression, and promotes HELF cell proliferation.  相似文献   

16.
Cysticercosis due to Taenia solium is one of the most common public health problems in various regions of the world. We have performed prolon magnetic resonance spectroscopy (1H MRS) experiments of the fluid aspirated from cysticerci excised from skeletal muscle (n = 16) and brain (n = 9) of infected swine to compare the metabolite pattern of cysticerci in different predilection sites. Perchloric acid extract of cysticercus cysts excised from skeletal muscles (n = 16) was also prepared to ascertain water-soluble, low molecular weight metabolites using 1H MRS. Absolute quantification and statistical analysis of different metabolites was done to look for any significant differences in different locations of cysts. The metabolite pattern of cysticerci was found to be similar in the various predilection sites. Metabolites observed were leucine, valine, alanine, lysine, glycine, lipid contents, lactate, glutamate, acetate, succinate, creatine, choline, and glucose. Concentration of creatine in cysticercus fluid of cysts removed from the muscle was found to be significantly higher (p = 0.001) than the cysts located in the brain. We conclude that the metabolite pattern in the cysticerci is not influenced by the surrounding tissue location; however concentration of certain metabolites may depend upon the tissue location.  相似文献   

17.
Based on previous findings of increased nitric oxide synthase (NOS) expression in human gliomas (4), we hypothesized that peroxynitrite, a highly reactive metabolite of nitric oxide (NO) and superoxide (O(*-)(2)), might be increased in these tumors in vivo. Here we demonstrate that nitrotyrosine (a footprint of peroxynitrite protein modification) is present in human malignant gliomas. Furthermore, we show that p53, a key tumor suppressor protein, has evidence of peroxynitrite-mediated modifications in gliomas in vivo. Experiments in vitro demonstrate that peroxynitrite treatment of recombinant wild-type p53 at physiological concentrations results in formation of higher molecular weight aggregates, tyrosine nitration, and loss of specific DNA binding. Peroxynitrite treatment of human glioma cell lysates similarly resulted in selective tyrosine nitration of p53 and was also associated with loss of p53 DNA binding ability. These data indicate that tyrosine nitration of proteins occurs in human gliomas in vivo, that p53 may be a target of peroxynitrite in these tumors, and that physiological concentrations of peroxynitrite can result in a loss of p53 DNA binding ability in vitro. These findings raise the possibility that peroxynitrite may contribute to loss of wild-type p53 functional activity in gliomas by posttranslational protein modifications.  相似文献   

18.
目的 p53是人体内重要的肿瘤抑制因子,但在人类肿瘤中因高频突变而失去抑癌功能。突变型p53 (mutant p53,mutp53)可促进肿瘤的发生、发展和转移。由于在肿瘤细胞中通常有较高表达,mutp53已成为区别于正常细胞的一个特异性抗肿瘤靶点。本研究旨在探索穿心莲内酯的抗肿瘤作用机制,为寻找靶向mutp53的抗肿瘤化合物提供理论依据。方法 构建可以快速筛选具有恢复mutp53下游转录因子的荧光素酶系统,观察穿心莲内酯对H1299-p53 R273H-PUMAluciferase和H1299-p53R175H-PUMA-luciferase细胞中PUMA基因的表达情况;采用免疫荧光实验,检测穿心莲内酯对HT29(R273H)和SK-BR-3 (R175H)细胞中mutp53的表达影响;采用免疫印迹实验进一步观察穿心莲内酯恢复了mutp53肿瘤细胞中p53下游靶蛋白PUMA、p21、Noxa的表达;随后采用MTT和流式细胞分析,检测穿心莲内酯对肿瘤细胞增殖和凋亡的影响;此外,还通过si RNA敲低Hsp70表达后,研究穿心莲内酯对mutp53下游基因的重激活作用。结果 穿心莲内酯可以...  相似文献   

19.
The p53 protein plays a major role in the maintenance of genome stability in mammalian cells. Mutations of p53 occur in over 50% of all cancers and are indicative of highly aggressive cancers that are hard to treat. Recently, there has been a high degree of interest in therapeutic approaches to restore growth suppression functions to mutant p53. Several compounds have been reported to restore wild type function to mutant p53. One such compound, CP-31398, has been shown effective in vivo, but questions have arisen to whether it actually affects p53. Here we show that mutant p53, isolated from cells treated with CP-31398, is capable of binding to p53 response elements in vitro. We also show the compound restores DNA-binding activity to mutant p53 in cells as determined by a chromatin immunoprecipitation assay. In addition, using purified p53 core domain from two different hotspot mutants (R273H and R249S), we show that CP-31398 can restore DNA-binding activity in a dose-dependent manner. Using a quantitative DNA binding assay, we also show that CP-31398 increases significantly the amount of mutant p53 that binds to cognate DNA (B(max)) and its affinity (K(d)) for DNA. The compound, however, does not affect the affinity (K(d) value) of wild type p53 for DNA and only increases B(max) slightly. In a similar assay PRIMA1 does not have any effect on p53 core DNA-binding activity. We also show that CP-31398 had no effect on the DNA-binding activity of p53 homologs p63 and p73.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号