首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Taurine, one of the sulfur-containing amino acids, has several functions in vivo. It has been reported that taurine acts on γ-aminobutyric acid receptors as an agonist and to promote inhibitory neurotransmission. Milk, especially colostrum, contains taurine and it is known that milk taurine is essential for the normal development of offspring. β-Alanine is transported via a taurine transporter and a protein-assisted amino acid transporter, the same ones that transport taurine. The present study aimed to investigate whether the growth and behavior of offspring could be altered by modification of the taurine concentration in milk. Pregnant ICR mice were separated into 3 groups: 1) a control group, 2) a taurine group, and 3) a β-alanine group. During the lactation periods, dams were administered, respectively, with 0.9% saline (10?ml/kg, i.p.), taurine dissolved in 0.9% saline (43 mg/10?ml/kg, i.p.), or β-alanine dissolved in 0.9% saline (31 mg/10?ml/kg, i.p.). Interestingly, the taurine concentration in milk was significantly decreased by the administration of β-alanine, but not altered by the taurine treatment. The body weight of offspring was significantly lower in the β-alanine group. β-Alanine treatment caused a significant decline in taurine concentration in the brains of offspring, and it was negatively correlated with total distance traveled in the open field test at postnatal day 15. Thus, decreased taurine concentration in the brain induced hyperactivity in offspring. These results suggested that milk taurine may have important role of regulating the growth and behavior of offspring.  相似文献   

2.
The freshwater fish gobi Preccottus glehni survives after wintering in ponds frozen in winter till the very bottom. In adaptation of poikilothermal animals to wintering at near-zero temperatures, an essential role is played by free amino acids; accumulation of a large amount of some particular acid at the period of preparation to the state of hibernation can indicate the protective role of this acid in the low-temperature adaptation. In the present work it has been shown that as soon as by the end of August, in the gobi muscle, the taurine concentration increases three times as compared with that in July, the taurine pool after this reaching 50% of the total pool of free amino acids in the muscle tissue. During December and after the 3-month hibernation in ice, it exceeds the April and July levels 8 and 4 times, respectively, and amounts to 50% of the total free amino acid pool for muscle and to 40% for blood. Several days prior to the beginning of winter hibernation under natural conditions, both in blood and in muscle, there is revealed disappearance or a sharp fall of concentration of essential amino acids. An essential peculiarity of the change in the free amino acid composition after hibernation was a significant rise of alanine concentration in muscle—3.5 times as compared with July and 1.4–1.8 times as compared with changes in December. The total free amino acid pool in muscle in December as compared with that in July increased almost 1.5 times (34.76 ± 1.12 μmol/g wet weight), while after hibernation—2 times. Peculiarities of taurine accumulation long before the beginning of winter cold allow suggesting that role of taurine consists in providing a possibility of existence of eurythermal fish at near-zero temperature.  相似文献   

3.
Plasma levels of 22 endogenous amino acids were measured by ion-exchange chromatography in four species of snakes: Thamnophis sirtalis, T. radix, Aipysurus laevis, and Python molurus. Despite considerable interspecific variation in the amino acid composition, all species showed relatively high plasma concentrations of histidine, a feature apparently unique to reptiles. The renal handling of these amino acids was studied by renal clearance methods. As in other vertebrates, net tubular absorption of filtered amino acids predominated. However, net tubular secretion of taurine, cysteic acid and/or phosphoserine and beta-alanine was observed, with taurine being the predominant amino acid secreted. The percentage reabsorption of the total amino acids filtered by the snake kidneys ranged from 79 to 95%. Evidence for the postrenal absorption of amino acids in these reptiles is presented. In species that normally undergo hibernation (Thamnophis spp.), the ability of the kidney to reabsorb amino acids was depressed by cold acclimation. Cold acclimation significantly decreased plasma levels of all amino acids except taurine, whose concentration increased. The increase in plasma taurine level may have resulted from cellular osmoregulation. Under these conditions, renal excretion of taurine increased concomitantly with the increase in plasma taurine concentration.  相似文献   

4.
《Insect Biochemistry》1987,17(4):573-577
Taurine concentration was measured in the tissues of Schistocerca americana gregaria, Blatella orientalis and Tenebrio molitor and was found to be present in all those examined. In the locust Schistocerca gregaria it was found in particularly high concentration in active flight muscle (26 μmol/g) to a lesser extent in the eye (7 μmol/g). The thoracic concentration of taurine in developing locusts showed a strong correlation with the development of flight muscle, increasing from 4.4 to 11.3 μmol/g in the thorax during the first 24 days of adult life. Analysis of the thoracic content of taurine in adults of the three species examined confirmed that high taurine concentrations are associated with fully functional flight muscle. The concentration in the thorax of the flightless flour beetle T. molitor was only 1.79 μmol/g compared to 11.33 μmol/g for the locust. Stress due to flying and picrotoxin poisoning caused the release of taurine from the muscles into the haemolymph, causing the concentration to rise from 1.1 to 2.2 and 5.76 μmol/g respectively. Analysis of the distribution of arginine kinase showed that this release was not due to breakdown of the muscle tissue.  相似文献   

5.
This study examined the acute effects of a one-hour hypertrophic strength training session (STS) on plasma amino acid concentration following oral ingestion of arginine or taurine in nine physically active men participating in a double-blind and randomised experiment. The subjects took placebo, arginine or taurine capsules (50 mg/kg) in either rest (REST) or STS condition. Blood samples were taken before and at 30, 60, 90, and 120 min after the beginning of the treatment and assayed for plasma amino acids with HPLC. There was a significant interaction effect with STS and sample time for both arginine and taurine in the raw data (p < 0.05). The modelled polynomial data for the arginine treatment showed that the peak concentration of arginine occurred at 69 min at rest and at 104 min in STS, and for the taurine treatment, the peak concentration of taurine occurred at 89 min at rest and at 112 min in STS. In conclusion, one hour of hypertrophic STS slows the increase in the peak concentration of plasma arginine and taurine after oral ingestion of the respective amino acids.  相似文献   

6.
We previously showed that extracellular levels of N-acetylaspartate (NAA) increase when a medium with reduced NaCl concentration is perfused through a microdialysis probe, and proposed that NAA may be released during hypoosmotic swelling. Here, we demonstrate that this effect is due to hypoosmolarity of the perfusion medium, and not to low NaCl. NAA changes in the dialysate were compared with those of taurine as the osmoregulatory role of this amino acid is established. Reduction of the NaCl concentration in the perfusion medium increased the dialysate levels of NAA and taurine, but this effect was abolished when NaCl was replaced by sucrose to maintain isosmolarity. The NAA response to hypoosmolarity was smaller than that of taurine, but it may still be important to neurons as NAA is predominantly neuronal in the mammalian CNS.  相似文献   

7.
In the present study, the cysteine sulfinate decarboxylase (CSD) mRNA expression was detected in rat testis by RT-PCR. The results showed that CSD mRNA was expressed in rat testis, and the putative encoded-amino acid sequence was exactly the same as that in rat liver which was already known. At the same time, the effects of taurine on testosterone secretion were investigated both in vivo and in vitro. In vivo, taurine were administered to male rats by tap water. The results showed that taurine obviously stimulated the secretion of FSH, LH and testosterone in serum, but showed no significant effect on the secretion of estradiol. Taurine administered in water could significantly increase the concentration of taurine in the blood and testis of rats. In vitro, cultured Leydig cells were treated with taurine independently or incubated with human chorionic gonadotropin (HCG) and progesterone. The results showed that taurine had biphasic effects on basal testosterone secretion in cultured Leydig cells. Low concentrations of taurine (0.1–100 μg/ml) could stimulate testosterone secretion, whereas high concentration of taurine (400 μg/ml) could inhibit testosterone secretion. Testosterone secretion stimulated by HCG was significantly increased by 10 and 100 μg/ml of taurine administration, and obviously decreased by treating with 400 μg/ml of taurine. Testosterone secretion induced by progesterone was significantly stimulated by treating with 1.0 and 10 μg/ml of taurine, however, it was significantly inhibited when treated with 400 μg/ml of taurine. Meanwhile, the effect of silencing CSD mRNA by siRNA on testosterone secretion was analyzed. The results showed that testosterone secretion was obviously decreased after the inhibition of CSD mRNA expression in cultured Leydig cells. These results indicated that taurine can be synthesized in rat testis by CSD pathway, and it plays important roles in testosterone secretion both in vivo and in vitro which need to be further investigated.  相似文献   

8.
Taurine concentration was reduced by 40 and 65%, respectively in rat cerebellar astrocytes grown in a chemically defined medium or in culture medium containing a blocker of taurine transport (GES). Cell volume in these taurine deficient cells was 10%–16% higher than in controls. When challenged by hyposmotic conditions, astrocytes release taurine and this efflux contributes to the volume regulatory decrease observed in these cells. Taurine deficient astrocytes showed a less efficient volume recovery as compared to controls with normal taurine levels. Exposed to 50% hyposmotic medium, astrocytes with normal taurine concentration recovered 60% of their original volume whereas taurine deficient cells recovered only 30–35%. Similarly, in 30% hyposmotic medium, taurine deficient astrocytes recovered only 40% as compared to 75% in controls. No compensatory increases in the efflux of other osmolytes (free amino acids or potassium) were observed during regulatory volume decrease in taurine deficient astrocytes.  相似文献   

9.
Summary We studiedin vivo the effects of locally infused taurine (50, 150, and 450 mM) on the striatal dopamine and its metabolites in comparison with those of GABA and homotaurine, a GABAA receptor agonist, in freely moving rats. The extracellular dopamine concentration was elevated maximally 2.5-, 2- and 4-fold by taurine, GABA and homotaurine, respectively. At 150 mM concentration, at which the maximum effects occurred, homotaurine increased the extracellular dopamine more than taurine or GABA. When taurine and GABA were infused simultaneously with tetrodotoxin the output of dopamine did not differ from that in the presence of tetrodotoxin alone. In comparison, tetrodotoxin did not inhibit the increase in extracellular dopamine caused by homotaurine. Furthermore, omission of calcium from the perfusion fluid inhibited the increase of extracellular dopamine caused by GABA. However, it did not block the increase of dopamine caused by taurine or homotaurine. The present study suggests that the effects of intrastriatal taurine, GABA and homotaurine on the striatal extracellular dopamine differ. Thus, these amino acids seem to affect the striatal dopaminergic neurons via more than one mechanism.  相似文献   

10.
Taurine, glutamine, glutamate, aspartate, and alanine are the most abundant intracellular free amino acids in human heart. The myocardial concentration of these amino acids changes during ischemia and reperfusion due to alterations in metabolic and ionic homeostasis. We hypothesized that dilated left ventricle secondary to mitral valve disease has different levels of amino acids compared to the right ventricle and that such differences determine the extent of amino acids' changes during ischemia and reperfusion. Myocardial concentration of amino acids was measured in biopsies collected from left and right ventricles before cardioplegic arrest (Custodiol HTK) and 10 min after reperfusion in patients undergoing mitral valve surgery. The dilated left ventricle had markedly higher (P < 0.05) concentrations (nmol/mg wet weight) of taurine (17.0 ± 1.5 vs. 10.9 ± 1.5), glutamine (20.5 ± 2.4 vs. 12.1 ± 1.2), and glutamate (18.3 ± 2.2 vs. 11.4 ± 1.5) when compared to right ventricle. There were no differences in the basal levels of alanine or aspartate. Upon reperfusion, a significant (P < 0.05) fall in taurine and glutamine was seen only in the left ventricle. These changes are likely to be due to transport (taurine) and/or metabolism (glutamine). There was a marked increase in the alanine to glutamate ratio in both ventricles indicative of ischemic stress which was confirmed by global release of lactate during reperfusion. This study shows that in contrast to the right ventricle, the dilated left ventricle had remodeled to accumulate amino acids which are used during ischemia and reperfusion. Whether these changes reflect differences in degree of cardioplegic protection between the two ventricles remain to be investigated.  相似文献   

11.
Taurine content and amino acid composition of human acrosome   总被引:2,自引:0,他引:2  
The presence and concentration of taurine was determined by amino acid analysis in human spermatozoa acrosomes isolated by the method of Srivastava. Taurine is one of the four amino acids whose concentration is higher in the acrosomal extracts, being only lower than histidine, methionine and lysine. It is worth mentioning that these four amino acids constituted 50% the free amino acid concentration in this organelle. The role that this high concentration of taurine, and also the presence of considerable amounts of methyl histidine may have in the functioning of the acrosome, is discussed.  相似文献   

12.
The effect of depolarizing potassium concentration on the release of [14C]glycine, [3H]GABA, and [35S]taurine was investigated in the whole chick retina and in a synaptosomal fraction prepared from the chick retina. In the whole retina, increasing potassium concentration above 40 mM resulted in an increased release of the three amino acids. The release of glycine was the most stimulated and that of taurine, the least. The potassium-evoked release of glycine and GABA was calcium dependent. In the synaptosomal fraction, 68.5 mM potassium significantly stimulated the efflux of GABA and glycine by a calcium-dependent mechanism. The release of taurine from this fraction was unaffected by high potassium.  相似文献   

13.
Summary.  The effect of dietary sulfur amino acids on the taurine content of rat blood and tissues was investigated. Three types of diet were prepared for this study: a low-taurine diet (LTD), normal taurine diet (NTD; LTD + 0.5% Met), and high-taurine diet (HTD; LTD + 0.5% Met + 3% taurine). These diets had no differing effect on the growth of the rats. The concentration of taurine in the blood from the HTD- and NTD-fed rats was respectively 1,200% and 200% more than that from LTD-. In such rat tissues as the liver, the taurine content was significantly affected by dietary sulfur amino acids, resulting in a higher content with HTD and lower content with LTD. However, little or no effect on taurine content was apparent in the heart or eye. The activity for taurine uptake by the small intestine was not affected by dietary sulfur amino acids. The expression level of taurine transporter mRNA was altered only in the kidney under these dietary conditions: a higher expression level with LTD and lower expression level with HTD. Received January 8, 2002 Accepted January 18, 2002 Published online August 20, 2002 Authors' address: Dr. Hideo Satsu, Laboratory of Food Chemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan, Fax: +81-3-5841-8026 E-mail: asatsu@mail.ecc.u-tokyo.ac.jp Abbreviations: HTD, high-taurine diet; NTD, normal taurine diet; LTD, low-taurine diet; TAUT, taurine transporter; CSA, cysteine sulfinate; CDO, cysteine dioxygenase; CSAD, cysteine sulfinate decarboxylase; PBS, phosphate-buffered saline; DIDS, 4,4′-diisothiocyanostilbene-2′,2′-disulfonic acid  相似文献   

14.
Recent investigations have demonstrated that taurine and phosphoethanolamine (PEA) are the amino acids most sensitive to microdialysis-perfusion with reduced concentrations of NaCl. The aim of the present work was to assess the importance of Na+ deficiency in evoking this response. Further, the previously described selectivity of replacement of Cl- with acetate with respect to amino acid release was reinvestigated. The hippocampus of urethane-anesthetized rats was dialyzed with Krebs-Ringer bicarbonate buffer, and amino acid concentrations of the perfusate were determined. Choline chloride was then stepwise substituted for NaCl, and, in some cases, mannitol (122 mM) was included in low sodium-containing media. In other experiments, NaCl was replaced with sodium acetate. The dialysate levels of taurine increased selectively in response to Na+ substitution. The elevation of taurine was linearly related to the increase in choline chloride, and maximal levels amounted to 335% of basal levels. The increase in extracellular taurine was not inhibited by perfusion with medium made hyperosmotic with mannitol. Replacement of Cl- with acetate stimulated the release of taurine to 652% of resting levels. In addition, PEA levels increased to 250% of control concentration. Other amino acids were unaffected by Cl- substitution. The results show that taurine transport is considerably more sensitive to Na+ depletion than glutamate transport, which also is known to be Na+ dependent. The taurine increase evoked by low Na+ is not caused by cellular swelling as it was unaffected by hyperosmolar medium. Finally, substitution of acetate for Cl- causes a specific elevation of extracellular taurine and PEA, possibly as a result of cytotoxic edema.  相似文献   

15.
Potentiation of the actions of insulin by taurine   总被引:1,自引:0,他引:1  
Taurine was found to mediate several changes in myocardial metabolism. In the absence of insulin, only oxygen consumption was significantly elevated by taurine; however, in the presence of 2.5 U/L insulin the amino acid caused the stimulation of glycolysis and glycogenesis, as well as oxygen utilization. These effects of taurine were shown to be dependent on insulin concentration, suggesting a link between the two substances. Measurements of key metabolic intermediates revealed that taurine stimulated glycolysis by enhancing flux through phosphofructokinase. Similarly, it was shown that glycogenesis was promoted because of the increase in glycogen synthase I and decrease in phosphorylase alpha activity. Several possible mechanisms for the observed changes are discussed.  相似文献   

16.
Changes in the levels of amino acids have been implicated as being important in osmoregulation both within and outside the CNS. The present study addressed the question of whether changes in osmolarity affect the extracellular concentration of amino acids in the rat hippocampus and femoral biceps muscle (FBM). Microdialysis probes were implanted in these tissues and perfused with standard physiological saline. Amino acid concentrations in the dialysate were determined with HPLC separation of o-phthaldialdehyde derivatives and fluorescence detection. The osmolarity of the perfusion buffer was gradually decreased by reduction of the concentration of NaCl from 122 to 61 to 0 mM. In other experiments, the osmolarity was increased by elevation of the NaCl level from 122 to 183 to 244 mM or by addition of mannitol. Glutamate, aspartate, gamma-aminobutyrate, and alanine levels in dialysate from the hippocampus increased when the concentration of NaCl was decreased by 61 mM, and they were further elevated when NaCl was omitted. Taurine and phosphoethanolamine (PEA) levels were maximally elevated at the intermediary decrease of NaCl concentration, and glutamine in particular but also methionine and leucine were suppressed by perfusion with hypoosmolar medium. The amino acid response of the FBM differed substantially from that of the hippocampus. The aspartate content increased slightly, and there was a marginal transient increase in PEA level. Perfusion with media containing high concentrations of NaCl induced diminished dialysate levels of taurine, PEA, and glutamate, whereas levels of other amino acids were either unaffected or increased. Mannitol administration via the perfusion fluid led to reduced levels of taurine, PEA, glutamate, and aspartate. In contrast to the effects of high NaCl levels, hyperosmotic mannitol did not induce increases in level of any of the amino acids detected. The results suggest that taurine and PEA are involved in osmoregulation in the mammalian brain. From a quantitative viewpoint, taurine seems to be most important. Transmitter amino acids may also be involved in the maintenance of the volume of neural cells subjected to severe disturbances in osmotic equilibrium.  相似文献   

17.
Eight species of bivalve molluscs were exposed both to gradual and abrupt salinity fluctuations and the changes in free amino acids and ninhydrin-positive substances in their adductor muscles measured. In all the species there was an initial rise in the concentration of ninhydrin positive substances when exposed to decreasing salinities. After acclimation for one week (14 cycles) to a 30 % sea-water minimum sinusoidal salinity regime there was no difference in the concentration of ninhydrin positive substances at high and low salinities in the adductor muscles of Mytilus edulis L. Together, the changes in taurine and non-essential amino acids alanine, aspartic acid, glutamic acid, and glycine largely accounted for the changes in the free amino-acid pool. It was found that ‘shell-closing’ mechanisms may result in changes in the free amino-acid pool brought about by reductive amination of Krebs cycle and other keto-acids under anaerobic conditions. It is suggested that ninhydrin-positive substances and free amino acids are used as osmotic effectors in marine bivalves exposed to constantly lowered salinities, but are not used for the same purpose in animals exposed to cyclic salinity changes.  相似文献   

18.
Summary The amino acid taurine plays an important trophic role during development and regeneration of the central nervous system. Other amino acid systems, such as those for glutamate and gamma-aminobutyric acid (GABA), are modified during the same physiological and pathological processes. After crushing the optic nerve, goldfish retinal explants were plated in the absence and in the presence of different amino acids and amino acid receptor agonists. The length and the density of the neurites were measured at 5 days in culture. Taurine increased the length and the density of neurites. Glutamate and glycine increased them at low concentration, but were inhibitors at higher concentration. The combination of N-methyl-D-aspartate (NMDA) and glycine produced a greater inhibitory effect than NMDA alone. NMDA or alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) added simultaneously with taurine impaired the stimulatory effect of the latter. GABA stimulated the emission of neurites in a concentration dependent manner. Hypotaurine also elevated the length of neurites, but cysteinesulfinic acid did not produce a significant effect. The concentrations of taurine, glutamate and GABA were determined by HPLC with fluorescent detection in the retina of goldfish at various days post-crushing the optic nerve. The levels of taurine were significantly increased at 48 h after the crush, and were elevated up to 20 days. Glutamate level decreased after the lesion of the optic nerve and was still low at 20 days. GABA concentration was not significantly different from the control. The interaction of these amino acids during the regenerative period, especially the balance between taurine and glutamate, may be a determinant in restoring vision after the crush.Abbreviations AMPA alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid - GABA gamma-aminobutyric acid - NMDA N-methyl-D-aspartate  相似文献   

19.
Radioactive zinc was used to study the effect of a binary parenteral nutrient solution, composed of amino acids and glucose, on zinc uptake by fibroblasts. The influence of addition of taurine, l-glutamine and of the increase in l-histidine content of the admixture was assessed. The pure mixture was highly toxic for cells and so it was diluted 1/5 in tyrode buffer with 2% albumin. As compared with cells incubated in the buffer containing albumin, zinc absorption was significantly higher (P < 0.05) in the presence of the amino acids of the mixture. Amino acids thus increased bioavailability by displacing zinc bound to albumin. When the histidine concentration in the nutrient medium (4.2 mm) was doubled, inhibition was noted after 30 min of incubation and zinc uptake thereafter remained comparable to that in histidine-free medium. The addition of glutamine (4.2 mm), usually not present in binary mixtures, resulted in significant differences as compared with glutamine-free control medium. Taurine (0.8 mm), led to a constant increase in zinc uptake by fibroblasts as compared with that obtained with taurine-free mixture. However, ultrafiltration showed that taurine was not able to displace zinc from albumin.  相似文献   

20.
The effects of the excitatory amino acid analogs kainate (KA) and N-methyl- -aspartate (NMDA) on release of amino acids from astrocytes in primary culture were investigated. Under basal conditions, glutamine was present in the medium at 15 μM. The levels of serine and taurine were 1.5 and 2.0 μM, respectively, while the concentration of other amino acids was below 1 μM. At 10 μM, KA did not affect amino acid release, whereas 100 μM KA enhanced glutamine release by 34% and taurine release by 85%. At 1 mM, KA stimulated the release of all amino acids measured. However, while most amino acids increased by 50–150%, glutamate and aspartate were elevated by more than 3000%. The effect of KA was greatly reduced by 1 mM kynurenate, an excitatory amino acid receptor antagonist. 1 mM NMDA did not stimulate amino acid release from the cultures. The results indicate that astrocytes are endowed with KA-receptive sites, but they do not seem to possess NMDA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号