首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The distribution of energy during the last stadium of the house cricket at two temperatures was the main theme of this study. Food consumption, growth, and oxygen consumption were greater in the first half of the stadium at both 25 and 35°C. An RQ > 1 indicated the conversion of carbohydrates to lipids during the first half of the instar at both temperatures. The duration of the stadium increased from 6 days at 35°C to 14 days at 25°C. The same maximal weight, protein content and lipid content were attained at both 25 and 35°C. A weight loss (mostly in stored lipids) after the midstadium peak weight was greater at the lower temperature. The absorption efficiency and the production of metabolic wastes were not affected by temperature, but the metabolic efficiency was much higher at 35 than at 25°C during the first half as well as the latter half of the stadium. Although during the first half of the stadium more energy was ingested, absorbed, and made available for growth at 25 than at 35°C, only slightly more growth occurred at 25°C. During the last half of the stadium less energy was ingested at 25 than at 35°C, and much more growth occurred at 35°C because of the even greater heat loss at 25 than at 35°C. Therefore at a lower temperature cricket larvae eat slightly more and reach the same maximal weight as at a higher temperature, but they end up smaller because they waste more energy during the extended duration of the stadium at the lower temperature.  相似文献   

2.
Summary We examined how predation by vespid wasps,Polistes dominulus andP. fuscatus, affected the behavior, growth rate and survivorship of aggregated caterpillars ofHemileuca lucina (Saturniidae). Although these larvae can exhibit a variety of defense and escape behaviors, in general larvae reacted to wasp attacks by clinging to the hostplant. Neighboring larvae in the aggregation responded by leaving the feeding site and moving to the interior or base of the plant. To determine wheter wasp attack affected the behavior and growth of the caterpillars that escaped, a field experiment was conducted with treatments of: 1) larvae exposed to wasps, 2) larvae protected from wasps, and 3) larvae protected from wasps but with the attack of wasps simulated (=harassment). Over just one instar, protected larvae gained significantly more weight than the harassed larvae, which in turn weighed significantly more than the larvae that escaped the wasps. The behavior of attacked and harassed larvae differed from that of the protected larvae; the disturbed larvae often fed in smaller groups and in shaded portions of the plant where only mature leaves were available. A laboratory experiment showed that at 35° C (daytime temperature) larvae had significantly higher relative growth rates and significantly shorter instar duration than larvae reared at 25° C. Our results suggest that wasps, in addition to killing caterpillars, indirectly affect larval fitness by slowing larval growth, at least in part by forcing larvae into cooler microhabitats where leaves are of lower quality.  相似文献   

3.
1. Temperature strongly influences the rates of physiological processes in insects, including the herbivore Manduca sexta and its larval endoparasitoid Cotesia congregata. Parasitisation by C. congregata decreases the growth and consumption of food by larval M. sexta. However, the effects of temperature on parasitised caterpillars and the developing wasp larvae are largely unknown. 2. In this study, parasitised and unparasitised caterpillars were reared at three constant temperatures (20, 25 and 30 °C) throughout larval development. Caterpillar mass gain and consumption were monitored daily until wandering (unparasitised control group) or wasp emergence (parasitised group) was observed. Development time and survival to emergence were measured as metrics of parasitoid performance. 3. Parasitised M. sexta developed more slowly than unparasitised controls, but had similar cumulative consumption until the terminal instar. Parasitised caterpillars with relatively large parasitoid loads had higher rates of consumption and growth than those with smaller loads. Both temperature and parasitoid load strongly affected wasp success. Mean development time to wasp emergence increased with low temperatures and with large loads. The combination of warm temperature and large parasitoid loads greatly reduced wasp survival. 4. These results demonstrate the interactive effects of rearing temperature and parasitisation on host consumption and growth rates throughout larval development. In addition, wasp performance was affected by the interaction of temperature and parasitoid load size. High temperatures alter the dynamics of the interaction between the parasitoid and its caterpillar host, which could have far-reaching impacts as the global temperatures continue to rise.  相似文献   

4.
Eighth instar female house crickets at 35°C developed faster, gained slightly more wet weight, and consumed less food, water, and oxygen than at 25°C. The duration of the 8th stadium at 25°C was 13 days (undisturbed), but was 14 days when disturbed by daily weighing. The duration of the 8th stadium at 30°C was 8 days and at 35°C was 6 days. During the first half of the 8th stadium at 25, 30, and 35°C, there was a high rate of food and water consumption resulting in statistically equal maximum dry weight achievement (124 mg). Respiratory quotients greater than one during this time indicated the conversion of ingested carbohydrate to fat. During the latter half of the 8th stadium, food and water consumption declined and the crickets lost weight. The period of weight loss was proportionally much longer at 25°C than at 30 or 35°C. Respiratory quotients lower than 1.0 during the latter half of the 8th stadium at 30 and 35°C indicated the metabolism of stored lipids. The respiratory quotient at 25°C never fell below 1.0, possibly because some food remained in the gut. The absorption efficiency was not influenced by temperature (25–35°C). Though the caloric content of the faeces was lower at 25°C than at 30 or 35°C, which correlated to the much longer time for food passage at 25°C than at 35°C, the difference in total calories egested was insufficient to alter the absorption efficiency. A longer period of reduced feeding and greater dry weight loss during the latter half of the 8th stadium at 25°C resulted in a lower metabolic efficiency at 25°C than at 30 or 35°C. Eighth instar crickets in response to a step-function transfer from 30°C–25 or 35°C showed an immediate (<1 hr) and complete metabolic adjustment which was not affected by the temperature history during the 7th stadium. House crickets did not exhibit temperature acclimation in the range 20–40°C, the metabolic rate being determined by ambient temperature. The Q10 for oxygen consumption in the range 20–40°C was about 2.  相似文献   

5.
The influence of different temperatures 10, 15, 20, and 25°C on the food consumption, growth, moulting rate, and respiration of Palaemon pacificus (Stimpson) from Langebaan Lagoon, west coast of South Africa, was studied under laboratory conditions. At 10°C mortality was high so that food consumption and moulting rate could not be determined as these were very low. At higher temperatures, food consumption was found to be temperature dependent, the rate at 25°C being twice that at 15°C. Growth rate was most favourable at 25°C. At 28°C growth rate was lower than at 20°C but higher than at 15°C. The intermoult period was 17 days at 15°C, and 11 and 10 days at 20, and 25°C, respectively. It seems that from an energetic point of view, 25°C is the most favourable temperature for P. pacificus. Several indices of growth efficiency at different temperatures are presented. The appearance of this prawn in South African west coast localities such as Langebaan during the summer and its disappearance during winter, can be explained by its temperature preferences. The possibility that thermal pollution from a nuclear power station may be beneficial to this prawn, is discussed.  相似文献   

6.
Temperature had various effects on the predacious efficacy of immature and mature stages of the coccinellid predator, Stethorus punctillum on the two-spotted spider mite, Tetranychus urticae. In the case of immature stages, food consumption at the lowest tested temperature (15°C) was significantly higher than that at higher temperatures (25 and 35°C). On the contrary, positive correlation between food consumption and temperature was evaluated in the case of adult predator. Regarding predator responses to different prey density, a high positive correlation between food consumption and prey density was evaluated among 4th instar larvae of the predator, followed by adult predator, while younger instars did not show reasonable increases with increasing prey densities. These results confirm that larval and adult stages of S. punctillum exhibit “Type II” functional response. In conclusion, the 4th instar larvae and adult predator are the most preferable stages in winter and summer crops to control T. urticae, respectively.  相似文献   

7.
The oomycete Leptolegnia chapmanii is among the most promising entomopathogens for biological control of Aedes aegypti. This mosquito vector breeds in small water collections, where this aquatic watermold pathogen can face short-term scenarios of challenging high or low temperatures during changing ambient conditions, but it is yet not well understood how extreme temperatures might affect the virulence and recycling capacities of this pathogen. We tested the effect of short-term exposure of encysted L. chapmanii zoospores (cysts) on A. aegypti larvae killed after infection by this pathogen to stressful low or high temperatures on virulence and production of cysts and oogonia, respectively. Cysts were exposed to temperature regimes between ?12 °C and 40 °C for 4, 6 or 8 h, and then their infectivity was tested against third instar larvae (L3) at 25 °C; in addition, production of cysts and oogonia on L3 killed by infection exposed to the same temperature regimes as well as their larvicidal activity were monitored. Virulence of cysts to larvae and the degree of zoosporogenesis on dead larvae under laboratory conditions were highest at 25 °C but were hampered or even blocked after 4 up to 8 h exposure of cysts or dead larvae at both the highest (35 °C and 40 °C) and the lowest (?12 °C) temperatures followed by subsequent incubation at 25 °C. The virulence of cysts was less affected by accelerated than by slow thawing from the frozen state. The production of oogonia on dead larvae was stimulated by short-term exposure to freezing temperatures (?12 °C and 0 °C) or cool temperatures (5 °C and 10 °C) but was not detected at higher temperatures (25 °C–40 °C). These findings emphasize the susceptibility of L. chapmanii to short-term temperature stresses and underscore its interest as an agent for biocontrol of mosquitoes in the tropics and subtropics, especially A. aegypti, that breed preferentially in small volumes of water that are generally protected from direct sunlight.  相似文献   

8.
Temperature and food quality can both influence growth rates, consumption rates, utilization efficiencies and developmental time of herbivorous insects. Gravimetric analyses were conducted during two consecutive years to assess the effects of temperature and food quality on fourth instar larvae of the forest tent caterpillar Malacosoma disstria Hübner. Larvae were reared in the laboratory at three different temperatures (18, 24 and 30 degrees C) and on two types of diet; leaves of sugar maple trees Acer saccharum Marsh. located at the forest edge (sun-exposed leaves) or within the forest interior (shade-exposed leaves). In general, larvae reared at 18 degrees C had lower growth rates and lower consumption rates than larvae reared at the warmer temperatures (24 and 30 degrees C). Moreover, the duration of the instar decreased significantly with increasing temperatures. Type of diet also affected the growth rates and amount of food ingested by larvae but did not affect the duration of the instar. Larvae fed sun-exposed leaves consumed more food and gained higher biomasses. Values of approximate digestibility and efficiency of conversion of ingested food were also higher when larvae were fed sun-exposed leaves. Higher growth rates with increasing temperatures were primarily the result of the shorter stadium duration. The higher growth rates of larvae fed sun-exposed leaves were possibly the result of stimulatory feeding and consequently greater food intake and also a more efficient use of food ingested. This study suggests that the performance of M. disstria caterpillars could be enhanced by warmer temperatures and higher leaf quality.  相似文献   

9.
The effect of temperature on the population growth potential of Culex annulirostris was determined by studying larval growth rate and survival at seven temperatures between 10 and 40°C, and adult survival and fecundity at 20, 25 and 30°C. All larvae died at Wand 40°C; survival was greatest at 25°C. The period for complete juvenile development ranged from 8.57 days (35°C) to 37 days (15°C). Development from egg to adult required 196 day-degrees above 9.7°C with incubation temperatures between 15 and 30°C. Population growth potential was positive at 20, 25 and 30°C, greatest at 25°C, but negative at 15°C. The minimum temperature for population growth was estimated as 17.5°C.  相似文献   

10.
Investigations of the effect of sudden temperature change on the phototaxis of Stage I and IV zoeae upon stimulation from horizontal and vertical directions with 500-nm light indicate a temperature-induced geotactic response in larvae of the crab Rhithropanopeus harrisi (Gould). For the horizontal tests both zoea stages were reared at 20 °C. Stage I showed positive phototaxis at temperatures between 15 ° and 35 °C, while Stage IV responded over the range of 10–30 °C. For the vertical tests, larvae, reared at 25 °C, were stimulated with overhead lights. Stage I zoeae ascended at 15 °, 20 ° and 25 °C and descended at 5 °, 10 °, 30 ° and 35 °C. Stage IV zoeae ascended at 20 ° and 25 °C and descended at 5 °, 10 °, 15 °, 30 ° and 35 °C. Although the descent at high temperatures could result from a negative phototaxis, a reversal in phototactic sign at high temperatures was not found in the horizontal experiments and the same vertical movement pattern is observed in total darkness. Upon exposure to high temperatures near the water surface, larvae would descend by means of a positive geotaxis rather than a negative phototaxis. This response involves active swimming by Stage IV larvae and passive sinking by Stage I.  相似文献   

11.
Necremnus artynes is native to the Mediterranean region where it has been observed in greenhouses parasitising Tuta absoluta on tomato. In this study, we evaluated the suitability of the different instars of T. absoluta as hosts for N. artynes and the life-history traits of N. artynes at three different temperature regimes (20, 25 and 30°C) on third instar T. absoluta larvae infesting tomato. N. artynes females preferred third instar T. absoluta larvae for oviposition, whereas host-feeding was significantly higher on the second instar larvae. Duration of life stages was no different between sexes but was affected by temperature, being significantly reduced as temperature increased. Pre-imaginal survival also decreased with temperature and the percentage of females was ca. 70% under all temperature regimes. Adult longevity was 1.5-fold significantly greater at 25°C compared to 30°C with no differences between 20 and 25°C. Fecundity was estimated at 36.3±7.80, 51.8±10.65 and 52.1±10.03 eggs/female and host-feeding at 59.5±8.50, 71.6±12.07, 51.4±7.89 hosts/female at 20, 25 and 30°C, respectively, although these differences among temperatures were not significant. However, oviposition and feeding rate were significantly higher at 30 and 20°C, respectively. The estimated intrinsic rate of increase (r m) was significantly higher as temperature increased from 20 to 30°C and it was greater than those reported for T. absoluta on tomato, indicating the potential of N. artynes to control this pest.  相似文献   

12.
Many insects in temperate zones withstand the adverse conditions of winter through entering diapause and the two most important environmental stimuli that induce diapause are photoperiod and ambient temperature. The Large Copper butterfly, Lycaena dispar Haworth (Lepidoptera: Lycaenidae), is a Palearctic butterfly that hibernates as larvae. Since this butterfly is a near threatened species in some regions, there has been a growing need for a standardized protocol for mass rearing of this butterfly based on the adequate knowledge of its ecology. In the present study, we first identified that L. dispar larvae were sensitive to the photoperiodic induction of diapause during their first larval instar. We then investigated to what extent the diapause-inducing effects of photoperiod could be modified by ambient temperatures in L. dispar larvae by exposing them to the range of day-lengths (L:D 14:10, 12:12, 10:14 and 8:16) at three different temperatures (15, 20 and 25 °C). All larvae were induced to enter diapause at low ambient temperature (15 °C) regardless of photoperiod, whereas most of them (86 %) exhibited direct development when temperature was high (25 °C). The photoperiodic induction of diapause was evident when day-length was shorter than 14 h at intermediate temperature (20 °C). Pre-diapause development was prolonged at low temperatures. Finally, we found that post-diapause development of L. dispar larvae was determined by both the chilling temperature experienced by diapausing larvae and the duration of larval diapause. Adult emergence was enhanced when larvae were chilled at 8 °C and when they had been under the state of diapause for 20 days before they were treated to terminate diapause.  相似文献   

13.
Changes in the number and morphometric parameters of A1 neurosecretory neurons (nsn) were analyzed in Lymantria dispar 4th instar caterpillars, exposed for 3 days to different stressors: cadmium, high temperature and tannic acid. The relative cytoplasm density of A1 nsn was also estimated. Caterpillars reared on a diet supplemented with cadmium exhibited increased size of A1 nuclei (10 and 250 μg Cd per g of dry food weight), increased number of nucleolii in nuclei and raised relative cytoplasm density in all experimental groups. Cadmium obviously induces intensive synthetic activity in A1 nsn. The second stressor was high environmental temperature of 35°C. Decrease of all analyzed morphometric parameters suggests that acute exposure of 4th instar caterpillars to 35°C, as well as 12 h recovery at optimal temperature of 23°C, reduced the activity of A1 nsn. Tannic acid was added to the artificial diet in the following concentrations: 1%, 2.5% and 5%. All estimated morphological parameters did not change after addition 1 and 2.5% of tannic acid. After addition of 5% of tannic acid, the activity of A1 nsn declined.  相似文献   

14.
Abstract .Temperature and the protein content of food affect rates of consumption and growth in herbivorous insects in different ways: reduced temperature typically reduces both consumption and growth rates, whereas reduced dietary protein typically increases consumption rate but either reduces or has no effect on growth rate. The interactions between temperature and dietary protein concentration in affecting consumption, growth and efficiency in fifth-instar caterpillars of Manduca sexta were studied, using both short-term (4 h) and long-term (duration of fifth stadium) experiments. The short-term experiments examined constant temperatures between 14 and 42°C, whereas the long-term experiments examined constant temperatures between 18 and 34°C; both experiments considered two levels of dietary protein. In both experiments, caterpillars had significantly higher consumption and frass production rates on low-protein compared with high-protein diets at each test temperature between 18 and 34°C, thereby compensating for the lower diet quality. In contrast, at more extreme temperatures (14 and 42°C) in the short-term studies, consumption and frass production rates were lower on low-protein compared with high-protein diets. As a result, there were substantial interactions between temperature and dietary protein for consumption and frass production rates in the short-term experiments, but not in the long-term experiments. These results suggest that interactions between temperature and dietary protein may emerge because of the failure of compensatory feeding responses at low and high temperatures. It is hypothesized that the failure of compensatory responses is more likely to occur under diurnally fluctuating temperatures than under a constant temperature with the same mean, and it is proposed that interactions between temperature and dietary protein for consumption are relevant to M. sexta and other caterpillars that experience wide diurnal fluctuations in temperature in the field.  相似文献   

15.
On the South Indian Ocean Province Islands of the sub-Antarctic, most nutrients are processed through a detritus-based food web. On Marion Island, larvae of the moth Pringleophaga marioni are one of the key decomposers. Abundance of these caterpillars is higher in newly abandoned Wandering Albatross (Diomedea exulans) nests than other habitats, and this observation has been explained by hypotheses regarding the thermal and nutrient advantages of nests. These hypotheses require a mechanism for increasing the abundance of caterpillars, since nests are an ephemeral resource, and here, we determine whether caterpillars respond to chemosensory and thermal cues using a laboratory choice chamber approach. Caterpillars show no significant preference for newly abandoned nest material over no other choice, old nest material, and the common mire moss Sanionia uncinata. Caterpillars that are acclimated to warm (15 °C) conditions do prefer lower (5 °C) to higher (15 °C) temperatures, perhaps reflecting negative effects of prolonged exposure to warm temperatures on growth. Caterpillars also show significant avoidance of conspecifics, possibly because of incidental cannibalism previously reported in this species. Thus, we find no empirical support for nest-finding ability in caterpillars based on chemosensory or thermal cues. It is possible that adult females or very early instar caterpillars show such ability, or high caterpillar density and biomass in nests are an incidental consequence of better conditions in the nests or deposition by the birds during nest construction.  相似文献   

16.
Development and survival of the immature stages of an aphidophagous ladybeetle, Propylea dissecta (Mulsant) was investigated at five constant temperatures, viz. 20, 25, 27, 30 and 35°C, using Aphis gossypii Glover as prey. Developmental period of all the life stages were significantly affected with change in constant temperature and developmental rate increased with increase in temperature. Theoretical lower thermal threshold for complete development and thermal constant was 10.39°C and 465.11 Day‐degrees, respectively. Of the various life stages, first instar larvae were most susceptible to mortality at temperatures between 20 and 30°C, whilst pre‐pupae suffered least mortality. Egg‐mortality was maximum at 35°C. Female biased sex ratios were obtained at all five temperatures tested with higher proportion of females at the extremes of temperature, thus suggesting that females are more thermal‐tolerant. Lowest mortality of immature stages with maximum larval survival and adult emergence was recorded at 27°C, while reverse was the case at 35°C. Thus, 27°C may be considered best for the laboratory rearing of P. dissecta.  相似文献   

17.
The thermoregulation behavior of Lucilia sericata larvae (Diptera: Calliphoridae), a necrophagous species that feeds on vertebrate cadavers, was investigated. These larvae require high heat incomes to develop, and can elevate temperatures by forming large aggregates. We hypothesized that L. sericata larvae should continue to feed at temperatures up to 38 °C, which can be reached inside larval masses. Thermal regulation behavior such as movement between a hot food spot and colder areas was also postulated. The hypotheses were tested by tracking for 1 h the activity of single, starved third instar larvae in a Petri dish containing 1 food spot (FS) that was heated to a constant temperature of 25 °C, 34 °C or 38 °C with an ambient temperature of 25 °C. The influence of previous conspecific activity in the food on larval behavior was also tested. The crops of larvae were dissected to monitor food content in the digestive systems. Based on relative crop measurements, larvae fed at all food temperatures, but temperature strongly affected larval behavior and kinematics. The total time spent by larvae in FS and the duration of each stay decreased at high FS temperature. Previous activity of conspecifics in the food slightly increased the time spent by larvae in FS and also decreased the average distance to FS. Therefore, necrophagous L. sericata larvae likely thermoregulate during normal feeding activities by adjusting to local fluctuations in temperature, particularly inside maggot masses. By maintaining a steady internal body temperature, larvae likely reduce their development time.  相似文献   

18.
The relationship between rate of larval development and the potential to prolong larval life was examined for larvae of the marine prosobranch gastropod Crepidula plana Say. Larvae were maintained in clean glass dishes at constant temperatures ranging from 12–29°C and fed either Isochrysis galbana Parke (ISO) or a Tahitian strain of Isochrysis species (T-ISO). Under all conditions, larvae grew at constant rates, as determined by measurements of shell length and tissue biomass. Most larvae eventually underwent spontaneous metamorphosis. Regardless of temperature, faster growth was associated with a shorter planktonic stage prior to spontaneous metamorphosis. Within an experiment, higher temperatures generally accelerated growth rates and reduced the number of days from hatching to spontaneous metamorphosis. However, growth rates were independent of temperature for larvae fed ISO at 25 and 29°C and for larvae fed T-ISO at 20 and 25°C. Where growth rates were unaffected by temperature, time to spontaneous metamorphosis was similarly unaffected. Maximum durations of larval life at a given temperature were shorter for larvae of Crepidula plana than for those of the congener C. fornicata (L.), although both species grew at comparable rates. Interpretations of the ecological significance of these interspecific differences in delay capabilities will require additional data on adult distributions and larval dispersal patterns in the field.  相似文献   

19.
Laboratory studies of temperature effects on short-term feeding and growth rates were combined with field data on thermal environments to explore the consequences of temperature variation for growth of caterpillars of the cabbage white butterfly, Pieris rapae. Mean short-term (24-h) consumption and growth rates of fourth-instar P. rapae feeding on collard leaves increased continuously with increasing temperatures between 10 degrees and 35 degrees C, peaked at 35 degrees C, and declined rapidly with temperatures above 35 degrees C. Physical models can mimic temperatures of real fifth-instar caterpillars under collard leaves within 1 degrees -2 degrees C in sunny summer conditions in Seattle, Washington. Continuous recordings of operative temperatures of model caterpillars in a collard garden suggest that, at the timescale of the duration of the fifth instar (5-8 d in the field), P. rapae caterpillars frequently experience temperatures spanning a 25 degrees C range, they spend most of their time at temperatures well below those that maximize growth, and they encounter substantial variation in the frequency distribution of operative temperatures between time periods. Combining these data on growth rate as a function of temperature and the distribution of operative temperatures in the field, I illustrate how growth rates at higher temperatures can make disproportionate contributions to the overall mean growth rates even when higher temperatures are relatively infrequent. Fluctuating thermal conditions may generate variable patterns of selection on reaction norms for growth rate in the field.  相似文献   

20.
The yellow peach moth, Conogethes punctiferalis (Guenée), a multivoltine species that overwinters as diapausing larvae, is one of the most serious insect pests on maize in China. Effect of photoperiod and temperature on larval diapause was examined under empirical laboratory conditions. Short‐day treatments caused larval diapause at 25°C, and the critical photoperiod was between 12 and 13 h (or 12 h 51 min) light per day. No sensitive instar was identified for diapause induction under alternated short‐ (L : D 11 : 13 h) and long‐day (L : D 14 : 10 h) treatments at different larval stages. However, accumulative treatment of three instars and 10 d under short‐day treatment was required for the induction of 50% larval diapause. All larvae entered diapause at 20°C, whereas less than 3% did so at 30°C, irrespective of the long‐ or short‐day treatment. Furthermore, under the short‐day treatment, more than 90% of larvae went into diapause with temperatures ≤ 25°C, but less than 17% did so at 28°C. In contrast, under the long‐day treatment, less than 19% of larvae went into diapause with temperatures ≥ 23°C. The forward shift (5°C) of critical temperature under the long‐day regime demonstrated the compensatory effect of temperature and photoperiod on diapause induction. In conclusion, C. punctiferalis had a temperature‐dependent type I photoperiodic diapause response; there was no sensitive instar for diapause determination, but the photoperiodic accumulation time countermeasures both of the short‐day cycles and the number of instars exposed, and the photoperiodic diapause response, was a temperature‐compensated phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号