首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Green cloverworm larvae. Plathypena scabra, were inoculated with Nomuraea rileyi by “tumbling” larvae in a vial of conidia. The ontogeny of the pathogen was followed by using standard histological techniques. N. rileyi conidia germinated on green cloverworm integument within 12 hr after inoculation. Germ tubes penetrated larval cuticle 36 hr after inoculation, then grew parallel to endocuticular laminae. After hyphal penetration of the epidermis ca. 4.5 days after inoculation, hyphal bodies were produced and were transported throughout the hemocoel. Hyphal bodies and hemocytes cohabited the hemocoel, but gut epithelial and muscle tissues were not invaded by Day 5. Hemocytes lysed and mycelia completely ramified throughout all larval tissues by 7 days after inoculation. Death of larvae was followed by conidiogenesis ca. 7.5 days after inoculation.  相似文献   

2.
The solitary parasitoid Microplitis tuberculifer (Wesmael) is an important biological control agent of various lepidopteran pests in Asia. We examined the preference of M. tuberculifer for different instars of its common host, Mythimna separata (Walker), host instar effects on parasitoid development, and the consequences of parasitism in different stages for growth and consumption of host larvae. The wasp successfully parasitized the first four larval instars of M. separata, but not the fifth, which appeared to be behaviorally resistant. First and second instars were parasitized at higher rates compared to thirds and fourths in no-choice situations, ostensibly due to longer handling times for the latter, but second instars were most preferred in a choice test that presented all stages simultaneously. Although later instar hosts yielded heavier cocoons, the fastest parasitoid development was obtained in second instars. Lower sex ratios were obtained from first instars as females appeared to lay a smaller proportion of fertilized eggs in small hosts. Both weight gain and food consumption of parasitized larvae were reduced significantly within 24 h of parasitism, regardless of the stage parasitized, and final body weights were less than 10% those of unparasitized larvae. Thus, M. tuberculifer has good potential as a biological control agent of M. separata, successfully parasitizing the first four larval instars and dramatically reducing plant consumption by the host in all cases.  相似文献   

3.
All entomopathogenic fungi infect insects by direct penetration through the cuticle rather than per os through the gut. Genetic transformation can confer fungi with per os virulence. However, unless the recipient isolate is nonpathogenic to the target insect, mortality caused by a transgenic isolate cannot be attributed solely to oral virulence due to the potential for some simultaneous cuticular infection. Here, a Metarhizium anisopliae wild-type isolate (MaWT) nonpathogenic to Spodoptera litura was genetically engineered to provide a transformed isolate (MaVipT31) expressing the insect midgut-specific toxin Vip3Aa1. Toxin expression was confirmed in MaVipT31 hyphae and conidia using Western blotting. Mortality, leaf consumption and body weight of S. litura larvae (instars I–IV) exposed to a range of concentrations of MaWT conidia were not significantly different to controls although the number of conidia ingested by surviving larvae during the bioassay ranged from 2.3 × 105 (instar I) to 8.1 × 106 (instar IV). In contrast, consumption of MaVipT31 conidia caused high mortalities, reduced leaf consumption rates and decreased body weights in all instars evaluated, demonstrating that oral virulence had been acquired by MaVipT31. Larval mortalities were much more dependent on the number of MaVipT31 conidia ingested than the duration of time spent feeding on conidia-treated leaves (r2: 0.83–0.94 for instars I–IV). LC50 and LT50 trends for MaVipT31 estimated by time-concentration-mortality modeling analyses differed greatly amongst the instars. For 50% kill to be achieved, instar I larvae required 3, 4 and 5 days feeding on the leaves bearing 103, 28 and 8 conidia/mm2 respectively; instar IV larvae required 6, 7 and 8 days feeding on leaves bearing 1760, 730 and 410 conidia/mm2 respectively. Our results provide a deeper insight into the high oral virulence acquired by an engineered isolate and highlight its great potential for biological control.  相似文献   

4.
We tested the combined effect of the fungus Beauveria bassiana and the microsporidium Nosema pyrausta on the European corn borer larvae, Ostrinia nubilalis, in the laboratory. The first instar of O. nubilalis larvae was the most sensitive to the B. bassiana infection followed by the fifth, second, third, and fourth instar (LC50s were 4.91, 6.67, 7.13, 9.15, and 6.51 × 105 conidia/ml for the first to fifth instars, respectively). Mortality of each instar increases positively with concentration of conidia. When B. bassiana and N. pyrausta were used in combination, mortality increased significantly in all instars. Relative to the B. bassiana treatment alone, the B. bassiana + N. pyrausta treatment decreased the LC50s by 42.16%, 37.63%, 21.60%, 27.11%, and 33.95% for the first to fifth instars, respectively. The combined effects of the two pathogens were mostly additive. However, at the two highest concentrations the pathogens interacted synergistically in the first and second instar. Individuals that survived the B. bassiana and B. bassiana + N. pyrausta treatments and developed into adults had significantly shorter lifespans and females oviposited fewer eggs than non-exposed insects. The effects on the longevity and the egg production were most pronounced at high concentration of B. bassiana conidia.  相似文献   

5.
The larvae of the pine processionary moth (PPM), Thaumetopoea pityocampa, feed on the needles of pine and cedar. The urticating hairs of older instars pose a threat to human and animal health. Strains of the entomopathogenic fungi, Metarhizium brunneum (V275, ARSEF 4556) and Beauveria bassiana (KTU-24), were assayed against first to fourth instar T. pityocampa using doses ranging from 1?×?105 to 1?×?108 conidia mL?1. The three strains differed slightly in their virulence but caused 100% mortality of all instars at the highest dose. The newly emerged or first instar larvae were extremely susceptible with 100% mortality being achieved 2–4 days post inoculation with V275 at all but the lowest dose. The fourth instar larvae appeared to be less susceptible than earlier instars. There was good horizontal transmission of conidia from treated to un-inoculated larvae. However, mortality was higher in third and fourth instars and where the ratio of inoculated versus untreated larvae was high. This we presume is due to spores being more readily trapped by the urticating hairs found on third and older instar larvae. Injection of the nests offers a simple and environmentally friendly way of controlling the pest with reduced risk to operators.  相似文献   

6.
《Journal of Asia》2007,10(2):151-155
The susceptibility of Spodoptera litura to SlMNPV infection was markedly affected by phyto-chemicals ingested during the acquisition of viral inoculum on foliage of tomato and cauliflower. The LD50 values computed for second, third and fourth instar larvae assayed on tomato leaves were 254, 819 and 23395 PIBs/larva, respectively whereas, it was 326, 1719 and 43843 PIBs/larva for respective instars when assayed on cauliflower leaves. Thus LD50 values for second, third and fourth instar larvae were 1.28-, 2.09- and 1.87- fold lower, respectively in tomato leaves. Similarly, LT50 values for second, third and fourth instar larvae assayed on tomato leaves were 7.1 and 7.5 days, respectively at inoculum dose of 2.7×104 PIBs/larva whereas, it was 7.7 and 8.0 days for respective instars when assayed on cauliflower leaves at same inoculum. This result also showed that the S. litura were more susceptible on tomato leaves in comparison to cauliflower leaves as the time required for mortality was lower in tomato leaves. The possible biochemical bases for differential level of mortality of S. litura larvae on tomato and cauliflower crops needs to be investigated.  相似文献   

7.
A functional response study of Chrysoperla carnea (Stephens) larvae to different densities of sugar cane whitefly Aleurolobus barodensis (Maskell) was conducted in test tubes at 26?±?2 °C, 65?±?5 % RH. Chrysoperla carnea showed two different types of functional response in larval instars. First instar exhibits type II. However, second and third larval instars revealed type III functional response. Based on modified Holling’s disk equation, the highest searching rates (a) of 0.82?±?0.0247 h?1 was found for first instar larva. For second and third larval instars, the attack coefficient (b) were 0.002?±?0.030 and 0.0025?±?0.0424 respectively. The shortest handling time (Th) per prey was observed at third instar stage (1.574?±?0.0568 h) followed by second and first instar with 1.72?±?0.0411 h and 1.919?±?0.0568 h respectively.  相似文献   

8.
Laboratory studies investigated the interaction between the fungal entomopathogen Beauveria bassiana (Balsamo) Vuillemin and sublethal doses of the insecticides imidacloprid and cyromazine when applied to larvae of the Colorado potato beetle, Leptinotarsa decemlineata (Say). When second instars were fed potato leaf discs treated with sublethal doses of imidacloprid and a range of doses of B. bassiana, a synergistic action was demonstrated. Similar results were observed when larvae were sprayed directly with B. bassiana conidia and immediately fed leaf discs treated with imidacloprid. No synergistic interaction was detected when larvae were fed leaf discs treated with sublethal doses ofimidacloprid 24 h after application of B. bassiana conidia to larvae. However, a synergistic interaction was detected when larvae were fed leaf discs treated with imidacloprid and sprayed with B. bassiana conidia 24 h later. Although sublethal doses of both imidacloprid and the triazine insect growth regulator (IGR) cyromazine prolonged the duration of the second instar, only imidacloprid interacted with B. bassiana to produce a synergistic response in larval mortality. In leaf consumption studies, the highest dose of B. bassiana tested promoted feeding in inoculated second instars. Feeding was inhibited when larvae were fed foliage treated with sublethal doses of imidacloprid and significantly reduced when fed foliage treated with a sublethal dose of cyromazine. Starvation of larvae for 24 h immediately after B. bassiana treatment produced a similar result to the combined treatment of B. bassiana and imidacloprid and increased the level of mycosis when compared with B. bassiana controls. Imidacloprid treatment affected neither the rate of germination of B. bassiana conidia on the insect cuticle nor the rate at which conidia were removed from the integument after application. The statistical analysis used to detect synergism and the possible role of starvation-induced stress factors underlying the observed synergistic interactions are discussed.  相似文献   

9.
Macrorhaphis acuta were bred in the laboratory (25°C) and fed on larvae ofAscotis selenaria reciprocaria. The incubation period was 8.4 days and the mean hatch was 94.4%. There were 5 nymphal instars which occupied 3.3, 5.0, 5.6, 6.6 and 12.0 days, respectively, from the lst to the 5th. Each nymph consumed an average of 22.8 host larvae to complete development. Adults had a mean longevity of 74.9 days and each consumed an average of 67.5 host larvae. Significant reduction was noted in pupation of 5th instar host larvae sucked by adult predators for periods ranging from 4 to 10 mn. The food requirements of 3rd, 4th, and 5th instar nymphs fed on 3rd instar host larvae were also investigated. The conversion ratio varied with the weight of food consumed during the instar and later instars were more efficient than earlier ones. Predatory value did not vary significantly with successive instars.  相似文献   

10.
1. Ontogenetic shifts in predator behaviour can affect the assessment of food‐web structure and the development of predator–prey models. Therefore, it is important to establish if the functional response and interference interactions differ between life‐stages. These hypotheses were tested by (i) comparing the functional response of second, third, fourth and fifth larval instars of Rhyacophila dorsalis, using three stream tanks with one Rhyacophila larva per tank and one of 10 prey densities between 20 and 200 larvae of Chironomus sp.; (ii) using other experiments to assess interference within instars (two to five larvae of the same instar per tank), and between pairs of different instars (one, two or three larvae per instar; total predator densities of two, four or six larvae per tank). 2. The first hypothesis was supported. The number of prey eaten by each instar increased with prey density, the relationship being described by a type II model. The curvilinear response was stronger for fourth and fifth instars than for second and third instars. Mean handling time did not change significantly with prey density, and increased with decreasing instar number from 169 s for fifth instars to 200 s for second instars. Attack rate decreased progressively with decreasing instar number. Handling time varied considerably for each predator–prey encounter, but was normally distributed for each predator instar. Variations in attack rate and handling time were related to differences in activity between instars, fourth and fifth instars being more active and aggressive than second and third instars, and having a higher food intake. 3. The second hypothesis was partially supported. In the interference experiments between larvae of the same instar or different instars, mean handling time did not change significantly with increasing predator density, and attack rate did not change for second and third instars but decreased curvilinearly for fourth and fifth instars. Interference between some instars could not be studied because insufficient second instars were available at the same time as fourth and fifth instars, and most third instars were eaten by fourth and fifth instars in the experiments. Prey capture always decreased with decreasing attack rate. Therefore, interference reduced prey consumption in fourth and fifth instars, but not in second and third instars. The varying feeding responses of different instars should be taken into account when assessing their role in predator–prey relationships in the field.  相似文献   

11.
Larvae of Anastrepha suspensa that were in the first day of the third instar were parasitized by females of the solitary endoparasitoid, Biosteres longicaudatus. At the end of the 6-hr oviposition period, larvae were ligated posterior to the ring gland so that some larvae had parasitoids anterior to the ligature while in others, the parasitoids were in the abdomen, posterior to the ligature. Ninety-two percent of the parasitoids anterior to the ligature hatched to the first through third instars. Parasitoids posterior to the ligature had a 75% egg hatch to the first instar only. No larval molts to the second or subsequent instars occurred in these parasitoids. Upon parabiosis to 3-day-old, unparasitized host pupae, the ligated larvae pupated and 97% of the first-instar parasitoids in these parabiosed larval abdomens molted to the second instar. Newly laid parasitoid eggs transplanted to 3-day-old pupal hosts had less than one-third of the egg hatch of those transplanted to first-day third-instar hosts. The data implicate the physiological state of the host (vis-a-vis pupation and associated events) as being an important factor in the development of the endoparasitoid.  相似文献   

12.
Germinating soybean seedlings were contaminated by soil-borne conidia of the entomogenous fungus Nomuraea rileyi. Although N. rileyi was detected on the unifoliate and trifoliate leaflets, most of the inoculum was found on the cotyledons. Diseased larvae of Trichoplusia ni released on the first trifoliate leaves of soybean plants dispersed to all trifoliates and died. In this way, inoculum is produced that infects other larvae feeding on these leaves.  相似文献   

13.
In this research work, the susceptibility of egg and four larval instars of Leptinotarsa decemlineata (Say) (Col.: Chrysomelidae) to Insect Growth Regulators (IGRs) compounds (lufenuron 25% EC and fenoxycarb 25% WP) was determined. Different larval instar groups were separated by measuring the head capsule width and were used in all bioassays. The data were analysed with log-probit transformation using the SPSS software. The LC50 for egg was determined by dipping egg masses in different concentration of either compound for 10 s, and LC50 values for each group of larvae was estimated by using treated potato plants. The LC50 values of lufenuron on egg, first, second and third instars of larvae were 682.65, 40.58, 47.83 and 261.38 ppm, respectively, and for fenoxycarb, these were estimated as 897.50, 35.60, 57.91 and 355.23 ppm, respectively. The LD50 values of lufenuron and fenoxycarb on second instar larvae were 139.56 and 228.42 ppm, respectively.  相似文献   

14.
The LD50 for larvae of Trichoplusia ni injected with blastospores of Nomuraea rileyi was 4.30 ± 1.16 hyphal bodies/larva; the LD50 for injected conidia was ca. 25,000 conidia/larva. The dose-mortality regression line for blastospores was Y = 4.6504 + 0.5487 X. Larval mortalities of Anticarsia gemmatalis and T. ni at 100 blastospores/larva were 0.4 ± 0.5% and 96.7 ± 1.9%, respectively. At a dosage of 25,000 conidia/larva, larval mortalities for A. gemmatalis and T. ni were 0.4 ± 0.5% and 43.1 ± 8.7%, respectively. Thus, larvae of A. gemmatalis were > 100 times and >200 times more resistant to injected conidia and blastospores, respectively, than were larvae of T. ni. Resistance of A. gemmatalis to N. rileyi may not be solely at the integumental barrier, as is often believed, but may also be a function of an internal physiological response.  相似文献   

15.
Control of Anopheles albimanus, the main vector of malaria on the coast of the State of Chiapas, is based mainly on application of chemical insecticides, which has resulted in resistance to most registered insecticides. Strategies for biological control may provide sustainable alternatives. We report on the lethal effects of a native isolate of Gliocladium virens on An. albimanus larvae and adults, compared to that of strains of Beauveria bassiana and Metarhizium anisopliae. Conidial suspensions of G. virens, B. bassiana and M. anisopliae cultured on Sabouraud agar were tested in bioassays with An. albimanus larvae and adults. Mosquito larvae were more susceptible to all fungi, compared to adults. On early and late instar larvae, M. anisopliae showed the most pathogenic effect (LC50 of 1.4×105 conidia/mL in early instars; 1.1×105 conidia/mL in late instars), followed by G. virens (LC50 of 3.3×105 conidia/mL in early instars and 3.5×106 conidia/mL in late instars). Metarhizium anisopliae sensu lato and the native G. virens could be considered good choices for An. albimanus control in southern Mexico.  相似文献   

16.
Uzma Afaq 《Journal of Asia》2011,14(4):393-397
Food consumption, utilization and ecological efficiency of Zygogramma bicolorata were studied in larvae and adults up to 45 days old. The study revealed that sex had a significant influence on dry food consumption in adults but not in larvae. The other parameters of ecological efficiencies, viz. efficiency of conversion of ingested food (E.C.I.), tissue growth and dry biomass, were highest in the fourth instar and in adult females. The Consumption Index (C.I.) was higher in males than females in both larval and adult stages. Developmental and growth rates were relatively higher in the first and second instars. The fourth instar and adult females were the most efficient consumers and converters of food. Food intake by females was an important determinant of the number of eggs laid.  相似文献   

17.
Laboratory bioassays showed that the susceptibility of Simulium vittatum to Neoaplectana carpocapsae increased with successive larval instars. First, second, and third instar larvae were resistant to infection, while seventh instars were highly susceptible. Significant differences in intra-instar susceptibility were also evident, as mortality ranged from 58% for the smallest seventh instar larvae to 97% for the largest. Dissections revealed that the basis for the resistance of early instars was physical exclusion of the comparatively large nematodes. The principle factor regulating the susceptibility of mid and late instars was injury to nematodes caused by larval mouthparts during ingestion. Differences in intra-instar susceptibility were similarly related to nematode injury.  相似文献   

18.
Tipula iridescent virus (TIV) is infective to all four larval instars, pupae, and adults of both sexes of Tipula oleracea, and iridescence has been observed in infected insects at all these stages. Third- and fourth-instar larvae were more resistant to ingested TIV than first and second instars. When TIV was injected into the hemocoel, the results suggested a possible decrease in resistance from the third larval instar to the pupa. Incubation periods (times from injection of TIV to appearance of iridescence) were significantly shorter in older fourth-instar larvae than in younger fourth-instar or thirdinstar larvae, but variability in incubation period was significantly greater in younger fourth-instar larvae than in the other two stages. Many insects which were inoculated with TIV in one stage developed iridescence and died in later stages. The amounts of infective TIV in two infected adults were estimated.  相似文献   

19.
Abstract Understanding predator–prey interactions has a pivotal role in biological control programs. This study evaluated the functional response of three larval instars of the green lacewing, Chrysoperla carnea (Stephens), preying upon eggs and first instar larvae of the cotton bollworm, Helicoverpa armigera Hübner. The first and second instar larvae of C. carnea exhibited type II functional responses against both prey stages. However, the third instar larvae of C. carnea showed a type II functional response to the first instar larvae of H. armigera, but a type III functional response to the eggs. For the first instar larvae of C. carnea, the attack rate on H. armigera eggs was significantly higher than that on the larvae, whereas the attack rate of the second instar C. carnea on H. armigera larvae was significantly higher than that on the eggs. For the third instar larvae of C. carnea, the attack rate on the larvae was 1.015 ± 0.278/h, and the attack coefficient on the eggs was 0.036 ± 0.005. The handling times of the third instar larvae on larvae and eggs were 0.087 ± 0.009 and 0.071 ± 0.001 h, respectively. The highest predation rate was found for the third instar larvae of C. carnea on H. armigera eggs. Results of this study revealed that the larvae of C. carnea, especially the third instar, had a good predation potential in controlling H. armigera eggs and larvae. However, for a comprehensive estimation of the bio‐control abilities of C. carnea toward H. armigera, further field‐based studies are needed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号