首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
From a genetically uniform wild-type strain of Metarhizium anisopliae pathogenic to mosquitoes, mutants were selected which were altered in the ability to degrade starch, gelatin, or milk. The mutants with enhanced starch degradation (dep), when grown on starch-containing media, proved hypervirulent toward the mosquito Culex pipiens pipiens in standard laboratory tests. Alterations in protein (gelatin or milk) degradation did not correlate with changes in virulence. The dep mutants appear to belong to the same class as mutants selected previously as hypervirulent and characterized by early spore germination. The relationship among polysaccharide degradation, early germination, and virulence is discussed.  相似文献   

2.
3.
The high molecular fraction of the extract from Metarhizium anisopliae grown on wheat bran contains proteolytic enzymes which are toxic for Galleria mellonella larvae. The complex of proteases was fractionated using precipitation with ammonium sulfate, gel filtration, and electrofocusing. Two components have been found: one with the optimum of activity on hemoglobin at pH 6.5, and the second with the optimum around pH 9. The prevailing protease acting at pH 6.5 was inhibited by phenylmethylsulfonyl fluoride and the inhibition was followed by decrease of toxicity. The molecular weights of the enzymes are 35 × 103 and 71 × 103.  相似文献   

4.
Termites encounter a diverse array of potentially useful and harmful fungi in their subterranean habitats. These vary from symbiotic to harmful species with varying levels of virulence. How these hemiedaphic insects survive in habitats with infective fungi is not well understood. Possible mediation of olfactory signals in avoiding contact with entomopathogenic fungi has been explored by a number of workers. In the present study, we initially found that Macrotermes michaelseni detected a virulent isolate of Metarhizium anisopliae from some distance and avoided direct physical contact. We hypothesized that there may be a relationship between virulence and repellency of different isolates of M. anisopliae and Beauveria bassiana to the termite. We compared these for selected isolates of the two fungi. Positive correlations between the two parameters for both sets of isolates of the fungi were obtained. The results show an interesting co-evolutionary phenomenon in which the termite's response to either M. anisopliae or B. bassiana is directly related to potential harm these fungi can inflict on the insect and that the virulent strains are more likely to be recognized from some distance and avoided.  相似文献   

5.
Reticulitermes flavipes workers were topically inoculated with ≈10,000 conidia of the entomopathogenic fungus Metarhizium anisopliae. After being kept in groups of 20 individuals for 1-9 d, histopathological examination showed that termites had an individual immune reaction. The nodule formation at the point of entrance of the fungal hyphae was identified as a cellular encapsulation and the different steps in the nodule formation are described. The relative number of hemocytes per termite increased 24 h after fungal exposure and remained high in the hemolymph for at least 3 d before decreasing back to pre-exposure levels. The role of an individual immune cellular reaction in social insects is discussed.  相似文献   

6.
The production of a toxic complex of proteolytic enzymes by Metarhizium anisopliae was evaluated with 29 nitrogen sources in modified Czapek-Dox medium in submerged cultures. The proteolytic complex is more constitutive than that of Beauveria bassiana and its production is influenced by the quality of complex natural media. The highest activity was attained with Galleria mellonella proteins. The proteolytic complex manifests proteolytic activity of two pH optima, 5.5 and 8.0. The ratio of these two activities differs markedly with the nitrogen source used, but the major proteolytic activity occurs at pH 5.5.  相似文献   

7.
In this study, we assessed the stability provided by different formulations to aerial conidia or biomasses (conidia, blastospores, and mycelia) of Beauveria brongniartii and Metarhizium anisopliae subjected to lyophilization. First, the impact of the freezing and drying processes on spore survival was evaluated. Whereas unprotected B. brongniartii spores showed high cryosensitivity, those of M. anisopliae were markedly harmed by the drying process. Then, the protective efficiency of 14 excipients was systematically evaluated and optimized regarding required concentrations. Fructose, glucose, and saccharose significantly enhanced viabilities for B. brongniartii and M. anisopliae spores following lyophilization, especially as a result of their cryoprotective effects. In addition, the effect of various bulking agents on spore survival was studied and dextran 4 was selected to enhance the physical properties of the lyophilized products. The combination of fructose and dextran 4 was further applied to prepare lyophilized biomasses of both fungi. In comparison to freshly harvested biomasses, the lyophilized products showed similar growth rates and a comparable production of virulent secondary metabolites such as destruxin A, destruxin B, or oosporein, suggesting their applicability as biological control agents.  相似文献   

8.
Extracellular enzyme production in solid culture media was analyzed in order to determine the variability among different Metarhizium anisopliae isolates. Using specific substrates, amylase, lipase, chitinase, and protease production was tested in 11 isolates from different regions of Brazil. Enzyme production was determined by the formation of a halo around the colony, and the diameters of both halo and colony were measured. The enzymatic index was expressed by the colony diameter/halo diameter ratio. In general, the isolates from the same region had similar enzymatic indexes, although similar indexes were also found for isolates from geographically distinct regions. The different isolates were tentatively grouped according to index similarity.  相似文献   

9.
10.
Fungal virulence has been mostly associated with cuticle-degrading enzymes that can be regulated depending on nutrient conditions. However, few studies have related fungal virulence to insect-toxic secreted proteins. Here, we describe how the presence of secreted toxic proteins may be linked to conidial virulence, which can be affected by nutrient factors. In this study we evaluated: (1) the virulence of the conidia of four Beauveria bassiana strains (EABb 01/103-Su, EABb 01/12-Su, EABb 01/88-Su and EABb 01/110-Su) grown on three different media (malt extract agar (MA), Rice (Rice), Sabouraud dextrose agar (SDA) and harvested from the cadavers of fungal-infected Galleria mellonella larvae (CAD) and (2) the toxicity of the crude soluble protein extracts (CSPEs) obtained from Adamek’s liquid medium inoculated with these conidia. Conidial suspensions were obtained from the four media, assessed on G. mellonella larvae and used to produce CSPEs that were injected into healthy G. mellonella larvae. The larvae were also injected with conidia obtained from MA and CAD cultures to expose them to in vivo-secreted proteins. For all isolates, the CAD conidia were by far the most virulent, followed by conidia grown on SDA, Rice and MA. The injected CSPEs showed the same toxicity trends as the conidial suspensions. In addition, the outcomes of injection of the in vivo-secreted proteins showed that the toxic proteins secreted in vitro by the EABb 01/110-Su strain are not produced in vivo. However, the other strains produced toxic proteins both in vivo and in vitro, suggesting that these toxic proteins may be virulence factors involved in invertebrate pathogenesis.  相似文献   

11.
Reticulitermes flavipes workers were individually inoculated with 10,000 conidia of the entomopathogenic fungus Metarhizium anisopliae. After being kept in groups of 20 individuals for 1-6 d, histopathological approach showed that most of the inoculated conidia were groomed from the surface of the cuticle by nestmates within 24 h, and that a large number of conidia was subsequently found in different parts of the gut of the groomers. Our observations showed that, among thousands of conidia found in the termite’s gut, conidial germination never occurred in all inspected specimens, even when the conidia had the chance to bind to the surface of the cuticular lining of the gut. In addition, when termites were left for decomposition several days after death caused by an external infection of M. anisopliae, the hyphal growth was generalized in the body cavity of the cadaver, but was never observed in the lumen of the gut even 2 d post-mortem. Our observation suggests that the putative biochemicals involved in the termite’s gut defense against fungal pathogens are from multiple origins.  相似文献   

12.
Germination of Beauveria bassiana (Bb) and Metarhizium anisopliae (Ma) conidia determined from a fast-rehydration (FR) protocol were compared to those obtained when dry conidia were subjected to slow rehydration (SR) by holding under high humidity conditions prior to aqueous suspension. Differences in viability estimates obtained using the FR vs. SR protocols increased markedly after conidia were exposed to various stress factors in storage (high aw, temperature, and O2 concentrations), with the SR protocol producing higher estimates of viability in all cases. After Bb conidia were stored under moist conditions for 21 days at 25 °C, the SR estimate of viability was >21% greater than the FR estimate. In jars flushed with different O2 concentrations and stored at 50 °C for 34 days, proportional differences between protocols varied, depending on water activity, from 18-44% in jars flushed with 0% O2 (100% N2) to as high as 63-93% when treated with 21-22% O2. For conidia stored over a broad range of moderate to high temperatures in the absence of O2, SR-FR differences were ?9% at 25-40 °C but 30% at 50 °C. Germination of stressed Bb and Ma conidia increased substantially when incubation time on the germination substrate was increased from 24 to 72 h, whereas germination of non-stressed conidia showed little change. Conidia debilitated by stress were characterized by hypersensitivity to lethal imbibitional damage (damage that is mitigated by slow rehydration) and slow germination. Viability protocols that may provide more reliable assessments of overall mycopesticide quality are discussed.  相似文献   

13.
14.
15.
A new genotyping tool has been developed and evaluated for Metarhizium anisopliae var. anisopliae. The tool is based on Restriction Fragment Length Polymorphism (RFLP) analysis of three chitinase genes that are functionally linked to insect-pathogenicity of this fungus. It allowed for discrimination of 14 genotypes among 22 M. anisopliae var. anisopliae strains of a world wide collection. Analyses revealed that the approach may also be applicable to other Metarhizium varieties. The new tool will be useful for genetic characterization of M. anisopliae var. anisopliae strains, and it is applicable for laboratories with limited access to molecular diagnostic equipment.  相似文献   

16.
Studies on the heat resistance of the conidia of Metarhizium anisopliae showed a clear correlation to the actual moisture conditions. The medium lethal temperature for 30 min of exposure in a suspension was 42°C, but 50.5°C at 100% RH, 57.5°C at 76% RH, and 68.8°C at 33% RH. The experiments on the effect of artificial sunlight indicated an extrapolated half-life of the conidia under field conditions of 1 hr, 40 min for 24 hr incubation at 25°C in the dark following exposure and about 2 hr, 45 min for 48 hr incubation.  相似文献   

17.
Gel permeation, preparative isoelectric focusing, and affinity chromatography were used to purify three inhibitors of proteolytic activity from perchloric acid extracts of last instar Galleria mellonella larvae. Electrofocusing experiments revealed three isoinhibitors with different isoelectric points: inhibitor I-1 with p1 of pH 5.6, inhibitor I-2, pH 7.7, and inhibitor I-3 (of small inhibitory activity), pH 8.6. By affinity chromatography on trypsin-Sepharose 4B the I-1 was purified 9.7 ×, but 71.1% of inhibitory activity was lost. Molecular mass of the inhibitory complex was 12,600 Da. I-1 and I-2 are relatively stable to heat at several pHs with minor stability at pH 10. I-1 and I-2 inhibit serine proteases about 2.5 times as much as sulfhydryl proteases. In the same ratio protease P-1 and protease P-2 from Metarhizium anisopliae are inhibited.  相似文献   

18.
19.
Species of the Metarhizium anisopliae complex are globally ubiquitous soil-inhabiting and predominantly insect-pathogenic fungi. The Metarhizium genus contains species ranging from specialists, such as Metarhizium acridum that only infects acridids, to generalists, such as M. anisopliae, Metarhizium brunneum, and Metarhizium robertsii that infect a broad range of insects and can also colonize plant roots. There is little information available about the susceptibility of Metarhizium species to clinical and non-clinical antifungal agents. We determined the susceptibility of 16 isolates comprising four Metarhizium species with different ecological niches to seven clinical (amphotericin B, ciclopirox olamine, fluconazole, griseofulvin, itraconazole, tebinafine, and voriconazole) and one non-clinical (benomyl) antifungal agents. All isolates of the specialist M. acridum were clearly more susceptible to most antifungals than the isolates of the generalists M. anisopliae sensu lato, M. brunneum, and M. robertsii. All isolates of M. anisopliae, M. brunneum, and M. robertsii were resistant to fluconazole and some were also resistant to amphotericin B. The marked differences in susceptibility between the specialist M. acridum and the generalist Metarhizium species suggest that this characteristic is associated with their different ecological niches, and may assist in devising rational antifungal treatments for the rare cases of mycoses caused by Metarhizium species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号