首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat anterior pituitary glands were examined by electron microscopy after staining with five different histochemical stains. Histochemical reactions were observed in the cell coat, cell membrane and the membrane surrounding the secretory granules in all anterior pituitary cells following staining with phosphotungstic acid (PTA), chromic acid and PTA, the periodic acid-thiosemicarbazide-silver protein method (PA-TSC-SP) of Thiéry, ruthenium red and concanavalin A. The staining was abolished when the sections were preincubated with pronase, neuraminidase or trypsin and subsequently exposed to PTA, chromic acid and PTA or PA-TSC-SP. The possible functional role of the glycoproteins present in the membrane surrounding the secretory granules is considered.  相似文献   

2.
Summary Rat anterior pituitary glands were examined by electron microscopy after staining with five different histochemical stains. Histochemical reactions were observed in the cell coat, cell membrane and the membrane surrounding the secretory granules in all anterior pituitary cells following staining with phosphotungstic acid (PTA), chromic acid and PTA, the periodic acid-thiosemicarbazide-silver protein method (PA-TSC-SP) of Thiéry, ruthenium red and concanavalin A. The staining was abolished when the sections were preincubated with pronase, neuraminidase or trypsin and subsequently exposed to PTA, chromic acid and PTA or PA-TSC-SP. The possible functional role of the glycoproteins present in the membrane surrounding the secretory granules is considered.  相似文献   

3.
For the first time, a morphological study of haemocytes from the crab Carcinus aestuarii was carried out by means of light microscopy and differing cytochemical assays. Analysis of haemocyte size frequency distribution (performed by means of a Coulter Counter) revealed the presence of two distinct haemocyte fractions in C. aestuarii haemolymph, depending on cell size. The first fraction was of about 3–5 µm in diameter and 30–50 fL in volume, the second was of about 6–12 µm in diameter and over 200 fL in volume. Mean cell diameter and volume were 8.20±1.7 µm and 272.30±143.5 fL, respectively. Haemocytes observed under light microscope were distinguished in three cell types: granulocytes (28%; 11.94±1.43 µm in diameter) with evident cytoplasmic granules, semigranulocytes (27%; 12.38±1.76 µm in diameter) with less granules than granulocytes, and hyalinocytes (44%; 7.88±1.6 µm in diameter) without granules. In addition, a peculiar cell type was occasionally found (about 1%): it was 25–30 µm in diameter and had a great vacuole and a peripheral cytoplasm with granules. Granulocyte and semigranulocyte granules stained in vivo with Neutral Red, indicating that they were lysosomes. Giemsa’s dye confirmed that granulocytes and semigranulocytes were larger than hyalinocytes. Pappenheim’s panoptical staining and Ehrlich’s triacid mixture allowed to distinguish granule-containing cells (including semigranulocytes) in acidophils (64%), basophils (35%) and neutrophils (1%). Hyalinocytes showed always a basophilic cytoplasm. Haemocytes were positive to the PAS reaction for carbohydrates, even if cytoplasm carbohydrate distribution varied among cell types. Lastly, lipids were found on cell membrane and in cytoplasm of all haemocyte types in the form of black spots produced after Sudan Black B staining. The morphological characterisation of C. aestuarii haemocytes by light microscopy was necessary before performing both ultrastructural and functional studies of circulating cells.Key words: Carcinus aestuarii, crab, haemocytes, light microscopy, cytochemical assays, morphological characterisation.  相似文献   

4.
Spinules of Carina generalis pollen are initiated within a tridimensional network during the microspore tetrad period. The network is stained selectively with the hydrazide-silver proteinate method of Thiéry following periodate oxidation and by phosphotungstic acid at low pH, demonstrating the presence of polyanions. Protein is indicated as a component of the network by positive staining with PTA in acetone. These results suggest the presence of polysaccharides and proteins, possibly as mucopolysaccharides or glycoproteins. The network may be considered as a part of the glycocalyx because of its composition and association with the plasma membrane. Sporopollenin accumulates on the tridimensional network or in meshes of the net. The beaded fine structure of spinules resists the acetolysis mixture of Erdtman. Our results imply that the plasma membrane and its glycocalyx are part of the system which mediates genetic expression of exine form. The implication is compatible with formation of specific exines on all pollen grains of a plant and on aborted microspores, diminutive spores with depauperate chromosome complements, and enucleate bodies of cytoplasm resulting from meiotic abnormalities.  相似文献   

5.
To confirm the presence of the outer spore membrane in dormant spore coats of Bacillus subtilis, the proteins from vegetative cell membrane and dormant spore coat fractions were compared by immunoblot assay with antibodies prepared against both preparations. The spore coat fraction contained at least 11 proteins antigenically identical to those in the vegetative cell membranes. Further, the cytochemical localization of the proteins derived from vegetative cell membrane in dormant spores was examined by an immunoelectron microscopy method with a colloidal gold-immunoglobulin G complex. The colloidal gold particles were observed in the coat region and around the core region of dormant spore. These results have provided evidence that some proteins from vegetative cell membrane remain in the dormant spore coat region of B. subtilis, although it is not clear whether the outer membrane persists as an intact functional entity or not.  相似文献   

6.
Myxococcus xanthus is a Gram-negative deltaproteobacterium that has evolved the ability to differentiate into metabolically quiescent spores that are resistant to heat and desiccation. An essential feature of the differentiation processes is the assembly of a rigid, cell wall-like spore coat on the surface of the outer membrane. In this study, we characterize the spore coat composition and describe the machinery necessary for secretion of spore coat material and its subsequent assembly into a stress-bearing matrix. Chemical analyses of isolated spore coat material indicate that the spore coat consists primarily of short 1–4- and 1–3-linked GalNAc polymers that lack significant glycosidic branching and may be connected by glycine peptides. We show that 1–4-linked glucose (Glc) is likely a minor component of the spore coat with the majority of the Glc arising from contamination with extracellular polysaccharides, O-antigen, or storage compounds. Neither of these structures is required for the formation of resistant spores. Our analyses indicate the GalNAc/Glc polymer and glycine are exported by the ExoA-I system, a Wzy-like polysaccharide synthesis and export machinery. Arrangement of the capsular-like polysaccharides into a rigid spore coat requires the NfsA–H proteins, members of which reside in either the cytoplasmic membrane (NfsD, -E, and -G) or outer membrane (NfsA, -B, and -C). The Nfs proteins function together to modulate the chain length of the surface polysaccharides, which is apparently necessary for their assembly into a stress-bearing matrix.  相似文献   

7.
The Bacillus cereus spore surface layers consist of a coat surrounded by an exosporium. We investigated the interplay between the sporulation temperature and the CotE morphogenetic protein in the assembly of the surface layers of B. cereus ATCC 14579 spores and on the resulting spore properties. The cotE deletion affects the coat and exosporium composition of the spores formed both at the suboptimal temperature of 20°C and at the optimal growth temperature of 37°C. Transmission electron microscopy revealed that ΔcotE spores had a fragmented and detached exosporium when formed at 37°C. However, when produced at 20°C, ΔcotE spores showed defects in both coat and exosporium attachment and were susceptible to lysozyme and mutanolysin. Thus, CotE has a role in the assembly of both the coat and exosporium, which is more important during sporulation at 20°C. CotE was more represented in extracts from spores formed at 20°C than at 37°C, suggesting that increased synthesis of the protein is required to maintain proper assembly of spore surface layers at the former temperature. ΔcotE spores formed at either sporulation temperature were impaired in inosine-triggered germination and resistance to UV-C and H2O2 and were less hydrophobic than wild-type (WT) spores but had a higher resistance to wet heat. While underscoring the role of CotE in the assembly of B. cereus spore surface layers, our study also suggests a contribution of the protein to functional properties of additional spore structures. Moreover, it also suggests a complex relationship between the function of a spore morphogenetic protein and environmental factors such as the temperature during spore formation.  相似文献   

8.
Recent evidence indicates that nemertean epidermis is capable of absorbing certain organic solutes from sea water via mediated transport mechanisms, as well as secreting mucoid substances. Morphological studies suggest that these functions may be restricted to distinct epidermal cell populations.Mucous secretion at the free surface of the epidermis is the result of synthesis and release activities of cells in both the epidermis and dermis (cutis). Secretion of dermal origin passes through the epidermis to the worm's exterior in slender cytoplasmic processes (canaux d'evacuation) in the form of membrane bound vesicles. A single gland cell type, located entirely within the epidermis, releases externally a granular product histochemically identified as largely protein plus some amount of carbohydrate with low periodic acid-Schiff's reactivity. The close juxtaposition of granular endoplasmic reticulum and Golgi apparati to the secretory material is consistent with the composition of this secretory product.Interstitial cells possess microvilli projecting from their apical surface, in addition to cilia. The outer surface of the plasmalemma covering these ciliary projections is unadorned, but microvilli possess a fuzzy coat. At the peripheral ends of the microvilli, the coat is filamentous, while at their base the coat consists of foliate structures. Cationic colloidal iron binding suggest that the filamentous portion of the fuzzy coat contains the greatest proportion of the acidic surface charge. The presence of periodic acid-Schiff's positive material in this region suggests that the fuzzy coat also contains carbohydrate. Lateral boundaries of the interstitial cell lacks obvious junctional specializations; however, the apical 150 nm intracellular space narrows to 40 nm and continues in a tortuous interdigitating path to the base of the adjacent interstitial cells. Where the apex of these cells is broad, the interdigitations are shallow, but the basal half of the interstitial cells have deep complex infoldings. Cytoplasmic organelles other than the nucleus, mitochondria and some granular endoplasmic reticulum, are restricted to the apical half of the cytoplasm. The presence of closely apposed Golgi complexes and smooth endoplasmic reticulum, multivesicular bodies, lysosome-like dense vesicles and coated vesicles suggests that these cells may play a role in intracellular digestion of phagocytized paniculate matter from the external environment. The amplification of the interstitial cell's free surface suggests that these cells are primarily responsible for mediated solute transport across the epidermis.  相似文献   

9.
Two multisubunit protein complexes for membrane protein insertion were recently identified in the endoplasmic reticulum (ER): the guided entry of tail anchor proteins (GET) complex and ER membrane complex (EMC). The structures of both of their hydrophobic core subunits, which are required for the insertion reaction, revealed an overall similarity to the YidC/Oxa1/Alb3 family members found in bacteria, mitochondria, and chloroplasts. This suggests that these membrane insertion machineries all share a common ancestry. To test whether these ER proteins can functionally replace Oxa1 in yeast mitochondria, we generated strains that express mitochondria-targeted Get2–Get1 and Emc6–Emc3 fusion proteins in Oxa1 deletion mutants. Interestingly, the Emc6–Emc3 fusion was able to complement an Δoxa1 mutant and restored its respiratory competence. The Emc6–Emc3 fusion promoted the insertion of the mitochondrially encoded protein Cox2, as well as of nuclear encoded inner membrane proteins, although was not able to facilitate the assembly of the Atp9 ring. Our observations indicate that protein insertion into the ER is functionally conserved to the insertion mechanism in bacteria and mitochondria and adheres to similar topological principles.

Redirecting the core subunits of the protein membrane insertion complex EMC into mitochondria rescues cells deficient for the mitochondrial Oxa1 system; this supports the hypothesis that the machinery for protein insertion into the ER membrane is functionally analogous to the YidC/Oxa1/Alb3 family of bacteria, mitochondria and chloroplasts.  相似文献   

10.
A method is described for the removal of the carbohydrate sequences of glycoproteins, and their covalent attachment to hydrocarbon chains. These synthetic membrane components may then be incorporated into liposome and cell membranes. Pronase-liberated glycopeptides derived from fetuin were linked by a reduced Schiff's base linkage to tetradecyl aldehyde. The resulting glycolipid was incorporated by external addition, into phosphatidylcholine liposomes. Glycolipid transfer to these liposomes rendered them suseptible to agglutination by wheat germ lectin, which binds N-acetylneuraminic acid, the terminal carbohydrate of the high molecular weight fetuin sugar sequence. Sequential removal of the terminal sugars, and subsequent agglutination behaviour towards various lectins, suggests that the carbohydrate sequence had been transfered intact. The glycolipid was incorporated into plant protoplast membranes by incubation with glycolipid-containing liposomes for 2 h at 37°C. These synthetic glycolipids may find a use in the study of carbohydrate-based recognition systems in animal and plant membranes. In addition they may prove useful in the development of cell and membrane tagging and handling techniques, by the insertion of sugar groups not normally present in these membranes.  相似文献   

11.
Fine Structure of Bacillus megaterium during Microcycle Sporogenesis   总被引:10,自引:7,他引:3       下载免费PDF全文
Ultrathin sections were prepared from cultures of Bacillus megaterium QM B1551 undergoing microcycle sporogenesis (initial spore to primary cell to second-stage spore without intervening cell division) on a chemically defined medium. The cytoplasmic core of the dormant spore was surrounded by plasma membrane, cell-wall primordium, cortex, outer cortical layer, and spore coats. Early in the cycle, the coat opened at the germinal groove, the cortex swelled, ribosomes and a chromatinic area associated with large mesosomes (which may later be incorporated into the expanding plasma membrane) appeared in the core, and the cell wall became defined at the site of the cell wall primordium. Poly-β-hydroxybutyrate granules began to appear in the primary cell at about 3 hr. By 7 hr, the forespore of the second-stage spore was delineated by typical double membranes. Between 7 and 12 hr, second-stage cell-wall primordium and cortex developed between the separating forespore membranes. The inner membrane became the plasma membrane of the second-stage spore, and the outer membrane eventually disintegrated within the second-stage spore cortex. A densely staining double layer (spore-coat primordium) developed external to the outer forespore membrane. The inner spore coat and the outer cortical layer of the second-stage spore developed from this primordium. The outer part of the spore coat, probably of sporangial origin, was laid down on the external surface of the inner spore coat. By 12 hr, second-stage spores were almost mature. By 20 hr, the mature endospores, with a thickened outer coat, were often still enclosed by degenerate primary cell wall and by the outer cortical layer and spore coat of the initial spore.  相似文献   

12.
RESUME. La Microsporidie Nosema bombycis, Protozoaire parasite agent de la pébrine du ver à soie, a étéétudiée cytochimiquement à la fois en microscopie photonique et électronique. Les examens ont porté sur la détection et la localisation des acides nucléiques (ADN et ARN), des polysaccharides, de la phosphatase acide, au cours des différents stades du développement dans les cellules de I'hôte (du schizonte à la spore). Les principaux résultats concernent les observations relatives aux polysaccharides et à la phosphatase qui ne sont détectés qu'au stade de la spore et ne sont pas observés au stade du schizonte. Les polysaccharides sont présents au niveau du sac polaire, du filament polaire et sur la membrane cytoplasmique; la phosphatase acide est localisée au niveau du sac polaire, du filament polaire et dans la vacuole postérieure. SYNOPSIS. Nosema bombycis, agent of pebrine disease of silkworm, was studied cytochemically, using both light and electron microscopy. Presence of nucleic acids (DNA and RNA), polysaccharides, and acid phosphatases was demonstrated and localization of these substances was determined in various stages of the parasite (from the schizont to the spore). DNA and RNA were detected in all these stages. Polysaccharides and acid phosphatase were found in the spore but not in the schizogonic stages. Polysaccharides were detected in the polar cap, the polar filament, and the limiting membrane of the cytoplasm of the spore. Acid phosphatase was found in the polar cap, the polar filament, and the posterior vacuole.  相似文献   

13.
The meiosis-specific mug28+ gene of Schizosaccharomyces pombe encodes a putative RNA-binding protein with three RNA recognition motifs (RRMs). Live observations of meiotic cells that express Mug28 tagged with green fluorescent protein (GFP) revealed that Mug28 is localized in the cytoplasm, and accumulates around the nucleus from metaphase I to anaphase II. Disruption of mug28+ generated spores with low viability, due to the aberrant formation of the forespore membrane (FSM). Visualization of the FSM in living cells expressing GFP-tagged Psy1, an FSM protein, indicated that mug28Δ cells harbored abnormal FSMs that contained buds, and had a delayed disappearance of Meu14, a leading edge protein. Electron microscopic observation revealed that FSM formation was abnormal in mug28Δ cells, showing bifurcated spore walls that were thicker than the nonbifurcated spore walls of the wild type. Analysis of Mug28 mutants revealed that RRM3, in particular phenylalanin-466, is of primary importance for the proper localization of Mug28, spore viability, and FSM formation. Together, we conclude that Mug28 is essential for the proper maturation of the FSM and the spore wall.  相似文献   

14.
A focused ultrastructural study of Marteilia spp. found in cultured Ostrea edulis, Mytilus edulis and Mytilus galloprovincialis from France and Spain was conducted with emphasis placed on haplosporosomes, striated plate-like inclusions and spore wall morphology. Two types of haplosporosome were identified, sphaeroid and oblate, which were common to the parasite in all 3 host species. A total of 492 haplosporosomes were measured; those from the Marteilia sp. in Mytilus spp. were marginally smaller than those in Ostrea edulis. Spore wall morphology was found to vary depending on the state of maturity of the parasite--the more mature the parasite, the thicker the wall surrounding it. It is suggested that the current criteria used to distinguish M. maurini from M. refringens are invalid and that M. maurini was relegated to a junior synonym of M. refringens.  相似文献   

15.
This paper provides an updated of airborne Alternaria spore spatial and temporal distribution patterns in the Iberian Peninsula, using a common non-viable volumetric sampling method. The highest mean annual spore counts were recorded in Sevilla (39,418 spores), Mérida (33,744) and Málaga (12,947), while other sampling stations never exceeded 5,000. The same cities also recorded the highest mean daily spore counts (Sevilla 109 spores m?3; Mérida 53 spores m?3 and Málaga 35 spores m?3) and the highest number of days on which counts exceeded the threshold levels required to trigger allergy symptoms (Sevilla 38 % and Mérida 30 % of days). Analysis of annual spore distribution patterns revealed either one or two peaks, depending on the location and prevailing climate of sampling stations. For all stations, average temperature was the weather parameter displaying the strongest positive correlation with airborne spore counts, whilst negative correlations were found for rainfall and relative humidity.  相似文献   

16.
We investigated the mechanism of antheridial dehiscence in ferns for the first time using fluorescence microscopy as well as scanning and transmission electron microscopy. The mechanism leading to antheridial dehiscence in Polystichum setiferum, Asplenium trichomanes and A. onopteris was found to depend on the different cellulose contents of the inner and outer walls of the ring cells detected with calcofluor white stain and the Thiéry test. The extremely low cellulose content of the ring cell walls facing spermatozoids made them less mechanically resilient than external wall cells. When the ring cells absorbed water they expanded only into the antheridial cavity, pushing the gametes against the cap cell, which detached from the ring cell below and enabled spermatozoid release. The newly released spermatozoids were spherical bodies covered in cellulose fibrils. The significance of cellulose fibrils could be to isolate the gametes from each other, to reinforce the electron transparent material and to protect the gamete from pressure created by the ring cells during release.  相似文献   

17.
The cell surface glycoprotein γ-glutamyl transpeptidase (GGT) was isolated from healthy human kidney and liver to characterize its glycosylation in normal human tissue in vivo. GGT is expressed by a single cell type in the kidney. The spectrum of N-glycans released from kidney GGT constituted a subset of the N-glycans identified from renal membrane glycoproteins. Recent advances in mass spectrometry enabled us to identify the microheterogeneity and relative abundance of glycans on specific glycopeptides and revealed a broader spectrum of glycans than was observed among glycans enzymatically released from isolated GGT. A total of 36 glycan compositions, with 40 unique structures, were identified by site-specific glycan analysis. Up to 15 different glycans were observed at a single site, with site-specific variation in glycan composition. N-Glycans released from liver membrane glycoproteins included many glycans also identified in the kidney. However, analysis of hepatic GGT glycopeptides revealed 11 glycan compositions, with 12 unique structures, none of which were observed on kidney GGT. No variation in glycosylation was observed among multiple kidney and liver donors. Two glycosylation sites on renal GGT were modified exclusively by neutral glycans. In silico modeling of GGT predicts that these two glycans are located in clefts on the surface of the protein facing the cell membrane, and their synthesis may be subject to steric constraints. This is the first analysis at the level of individual glycopeptides of a human glycoprotein produced by two different tissues in vivo and provides novel insights into tissue-specific and site-specific glycosylation in normal human tissues.  相似文献   

18.
The adaptor protein-2 (AP-2) complex is a heterotetramer involved in clathrin-mediated endocytosis of cargo proteins from the plasma membrane in animal cells. The homologous genes of AP-2 subunits are present in the genomes of plants; however, their identities and roles in endocytic pathways are not clearly defined in plants. Here, we reveal the molecular composition of the AP-2 complex of Arabidopsis thaliana and its dynamics on the plasma membrane. We identified all of the α-, β-, σ-, and μ-subunits of the AP-2 complex and detected a weak interaction of the AP-2 complex with clathrin heavy chain. The μ-subunit protein fused to green fluorescent protein (AP2M-GFP) was localized to the plasma membrane and to the cytoplasm. Live-cell imaging using a variable-angle epifluorescence microscope revealed that AP2M-GFP transiently forms punctate structures on the plasma membrane. Homozygous ap2m mutant plants exhibited abnormal floral structures, including reduced stamen elongation and delayed anther dehiscence, which led to a failure of pollination and a subsequent reduction of fertility. Our study provides a molecular basis for understanding AP-2–dependent endocytic pathways in plants and their roles in floral organ development and plant reproduction.  相似文献   

19.
The de novo formation of multilayered spore walls inside a diploid mother cell is a major landmark of sporulation in the yeast Saccharomyces cerevisiae. Synthesis of the dityrosine-rich outer spore wall takes place toward the end of this process. Bisformyl dityrosine, the major building block of the spore surface, is synthesized in a multistep process in the cytoplasm of the prospores, transported to the maturing wall, and polymerized into a highly cross-linked macromolecule on the spore surface. Here we present evidence that the sporulation-specific protein Dtr1p (encoded by YBR180w) plays an important role in spore wall synthesis by facilitating the translocation of bisformyl dityrosine through the prospore membrane. DTR1 was identified in a genome-wide screen for spore wall mutants. The null mutant accumulates unusually large amounts of bisformyl dityrosine in the cytoplasm and fails to efficiently incorporate this precursor into the spore surface. As a result, many mutant spores have aberrant surface structures. Dtr1p, a member of the poorly characterized DHA12 (drug:H+ antiporter with 12 predicted membrane spans) family, is localized in the prospore membrane throughout spore maturation. Transport by Dtr1p may not be restricted to its natural substrate, bisformyl dityrosine. When expressed in vegetative cells, Dtr1p renders these cells slightly more resistant against unrelated toxic compounds, such as antimalarial drugs and food-grade organic acid preservatives. Dtr1p is the first multidrug resistance protein of the major facilitator superfamily with an assigned physiological role in the yeast cell.  相似文献   

20.
Ultrastructural, histochemical, and freeze-fracture studies of material recovered by bronchoalveolar lavage from patients with pulmonary alveolar proteinosis revealed four types (A, B, C, and D) of multilamellated structures (MS). Type A, the major component, consisted of concentric, trilaminar structures which were composed of two electron-dense layers and a central lucent layer (5.7-7.5 nm in overall width) alternating with wider (25-30 nm) electron-lucent intervening layers. Type B MS were formed by concentric lamellae with a 5-5.3-nm periodicity. Type C MS were composed of wavy, electron-dense lamellae with a 4-4.5-nm periodicity. Type D MS were conglomerated masses of intricately arranged double or triple electron-dense layers (7.5-13.5 nm wide) alternating with wider (30-40-nm) electron-lucent layers. The electron-dense lamellae of type A, type C, and type D MS were stained with ruthenium red, the Thiéry method, and concanavalin A, indicating the presence of carbohydrate components. Freeze-fracture studies revealed smooth inner and outer surfaces in type A MS, with the fracture planes passing through the central parts of the trilaminar structures; the intervening layers contained 10-nm particles, which probably are proteins. Type B MS had smooth surfaces, and type C MS had slightly particulate surfaces; while type D MS showed tubular or polygonal structures, 350 nm wide, with rows of particles 7-8 nm in diameter. It is concluded that type A and type D MS contain proteins and carbohydrates, probably in the form of glycoproteins, as well as phospholipids, and are related to tubular myelin. Type B and type C MS are considered to contain mainly phospholipids; type C MS are also considered to contain carbohydrates and to be related to lamellar bodies of type II alveolar epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号