首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Re-investigation of the role of the corpora cardiaca in the reproductive behaviour of the giant silkmoths, Hyalophora cecropia and Antheraea polyphemus, showed that this pair of glands plays no essential role, either in “calling” behaviour by virgin females or in increased oviposition due to mating. Removal of corpora cardiaca-corpora allata complexes, either from diapausing pupae or from freshly eclosed adult females, had no effect on the calling behaviour or on its timing in either species. Moreover after mating, these operated females laid eggs in the typical mated oviposition pattern. Furthermore, females in which there was only a nervous connection between the brain and the abdomen but no haemolymph circulation called normally and oviposited after mating.Although the corpora cardiaca were not essential for calling behaviour, hormogenates of corpora cardiaca-corpora allata complexes and blood from calling or ovipositing females induced a typical “calling” response in 30–60% of the isolated virgin H. cecropia abdomens tested. This activity was not species-specific as it was also found in Manduca sexta, but the restriction of major activity to corpora cardiaca extracts and haemolymph suggested that a neurosecretory factor may modulate the normal neural control of calling behaviour.  相似文献   

2.
The rhythmic exposure of the sex pheromone gland during calling in female Utetheisa ornatrix (L.) (Lepidoptera: Arctiidae) is under neural control. Two lines of evidence support this conclusion. (1) Bisection of the ventral nerve cord of adult females prevented calling while sham-operations had little effect. (2) Brief electrical stimulation of the ventral nerve cord in isolated abdomens elicited extended trains of regularly spaced gland exposures indistinguishable from normal calling behaviour. The coordination of calling behaviour is localized in the terminal abdominal ganglion and the peripheral structures that it innervates. Removal of the corpora allata and corpora cardiaca, neurohaemal organs previously implicated in calling control, did not affect calling behaviour.  相似文献   

3.
The neuroendocrine mechanisms underlying pheromone regulation in cockroaches are unclear because of a lack of physiological and chemical data. The present report describes experiments designed to determine the role of the brain, corpora allata, and juvenile hormone III in the production of sex pheromone by male Nauphoeta cinerea cockroaches. The levels of two sex pheromone components, i.e., acetoin and 2‐methylthiazolidine, were measured by gas chromatographic analysis of sternal gland extracts obtained from individual males. Allatectomy or decapitation performed up to 2 to 3 days after imaginal molt caused a decrease in sex phermone levels. Conversely decapitation or allatectomy performed after 3 to 4 days post‐eclosion had almost no effect on sex pheromone levels. Injection of JHIII into allatectomized and decapitated males stimulated pheromone production while injection of brain extract had no effect. These results indicate that JHIII is involved in the differentiation of sternal glands and that regulation via pheromone biosynthesis activating neuropeptide (PBAN) does not occur in N. Cinerea cockroaches. Arch. Insect Biochem. Physiol. 40:165–172, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

4.
The activity of the substance(s) which are contained in the cephalic endocrine organs of the locust which induce egg diapause in Bombyx mori was examined by implantation and injection of saline extracts of these organs. Extracts from the median and lateral neurosecretory parts of the locust brain were not effective in inducing egg diapause. Extracts of the corpora cardiaca, corpora allata, and suboesophageal ganglion of the locust induced diapause eggs in Bombyx pharate adults from which the suboesophageal ganglion had been removed. The first two extracts could induce egg diapause even in isolated abdomens of pharate adults of Bombyx. In the locust corpora cardiaca, the activity was present only in the glandular lobe and not in the nervous region. This activity decreased when the nervi corporis cardiaci I and II and of nervi corporis allati I were cut. Allatectomy also brought about a decrease in the activity in the glandular lobe which could not be restored by the injection of juvenile hormone. The activity in the corpora allata was enhanced slightly by the disconnection though not significantly.From these results, it is assumed that the corpora cardiaca, corpora allata and suboesophageal ganglion of the locust contain and active principle(s) capable of inducing egg diapause in Bombyx mori. The nervous connections between the brain, corpora cardiaca, and corpora allata are essential for the accumulation of the active substance(s) in the glandular lobes of the corpora cardiaca.  相似文献   

5.
Males of Nauphoeta cinerea produce a volatile pheromone which attracts the female for mating. Allatectomy of males either 5 days prior to or within 12 hr following the imaginal ecdysis does not impair pheromone production, pheromone release, nor any observable aspect of mating behaviour. It is proposed that in N. cinerea, and in other cockroach species where the male releases a volatile pheromone to attract the female, pheromone production is not controlled by the corpora allata, and pheromone release is under direct motor control.  相似文献   

6.
Juvenile hormone synthesis by adult female corpora allata was inhibited following implantation into final-larval-instar males; inhibition was prevented by decapitation of the larval hosts on day 11 (prior to the head critical period for moulting), but not by decapitation on day 13. Implantation of one larval protocerebrum restored inhibition of implanted corpora allata, demonstrating that the brain releases an inhibitory factor. Corpora allata implanted into larvae decapitated on day 11 were inhibited by injections of 20-hydroxyecdysone. Since treatment of corpora allata with 20-hydroxyecdysone in vitro did not inhibit juvenile hormone synthesis, ecdysteroids probably act indirectly on the corpora allata. Juvenile hormone synthesis and haemolymph ecdysteroid concentration were measured following implantation of corpora allata along with two larval brains into larval hosts. Brain implantation did not affect ecdysteroid concentration, but did inhibit juvenile hormone synthesis, even in animals with low haemolymph ecdysteroid concentration. Incubation with farnesoic acid stimulated juvenile hormone synthesis by corpora allata from males early in the final larval stadium, but not after day 8, showing that one of the final two reactions of juvenile hormone synthesis is rate-limiting in larval corpora allata at this stage. Adult female corpora allata which had been humorally inhibited by implantation into larvae were stimulated by farnesoic acid.  相似文献   

7.
Female receptivity and sex pheromone production are controlled by different mechanisms. In B. fumigata females the corpora allata control pheromone production. The female's pheromone releases courtship behaviour in the male; he raises his wings exposing his tergum and apparently releases a pheromone. The receptive female is attracted to the male and mounts and ‘feeds’ on his tergum. The mounting and feeding behaviour, which is indicative of female receptivity, is not directly controlled by the corpora allata.

Receptivity in N. cinerea and L. maderae is determined by some event, presumably in the brain, which occurs at about the same time as the onset of activity of the corpora allata. It is suggested that the neurosecretory system is involved in acceptance of the male by the female.  相似文献   


8.
The presence of juvenile hormone in the haemolymph of larvae of Locusta has been detected by a modified Galleria bioassay and these results are compared with indirect methods of estimating corpus allatum activity. Juvenile hormone is present in the haemolymph during the fourth larval instar except on the last day of the instar, and is absent from the haemolymph of the fifth and final larval instar except on the last day of the instar. Changes in the volumes of the corpora allata simply reflect changes in the growth of the whole insect and are of no value in predicting endocrine activity. Changes in the size of the cells of the corpora allata can be correlated with the presence of juvenile hormone in the haemolymph in the fourth larval instar, but similar changes in cell size occur in the fifth larval instar when no juvenile hormone is present in the haemolymph. The effects of the implantation of corpora allata are unreliable as estimates of corpus allatum activity as isolated corpora allata from fifth instar larvae release juvenile hormone. Indirect methods of measuring corpus allatum activity are thus shown to be unreliable. The Rf value of Locusta juvenile hormone as determined by thin-layer chromatography differs from that of Roeller's juvenile hormone, suggesting that the two hormones might be chemically distinct.  相似文献   

9.
In the female turnip moth, Agrotis segetum, a pheromone biosynthesis activating neuropeptide (PBAN) stimulates sex pheromone biosynthesis which exhibits a daily rhythm. Here we show data supporting a circadian rhythm in PBAN release from the corpora cardiaca, which we propose regulates the endogenous rhythm in sex pheromone biosynthesis. This conclusion is drawn as the observed daily rhythm in PBAN-like immunoreactivity in the hemolymph is persistent in constant darkness and is phase-shifted by an advanced light:dark cycle. PBAN-like immunoreactivity was found in the brain, the optic lobe, the suboesophageal ganglion and in the retrocerebral complex. In each hemisphere ca. 10 immunopositive neurons were observed in the pars intercerebralis and a pair of stained somata in the dorso-lateral protocerebrum. A cluster of cells containing PBAN-like immunoreactive material was found in the tritocerebrum and three clusters of such cells were found in the SOG. Their processes reach the corpora cardiaca via nervi corporis cardiaci and the dorsal surface of the corpora allata via the nervi corporis allati.  相似文献   

10.
Juvenile hormone was detected in the haemolymph of adult female Locusta by a modified Galleria bioassay. The hormone was present in the haemolymph immediately after the final ecdysis, but could not be detected after this time until the end of the period of somatic growth just before the start of ovarian development. During the first gonotrophic cycle the levels of juvenile hormone in the haemolymph could be related to the growth of the proximal oöcytes. The volumes of the corpora allata could be related to haemolymph juvenile hormone levels during the first gonotrophic cycle. Ovariectomy had no effect on haemolymph juvenile hormone levels or on the volumes of the corpora allata.  相似文献   

11.
A radioimmunoassay (RIA) for juvenile hormone III has been established which quantifies the biosynthesis of this hormone in vitro by the corpora allata of larvae and pupae of the tobacco hornworm, Manduca sexta. The specificity of the RIA for homologues and metabolites of juvenile hormone III was determined and it was found that the antibody was specific for juvenile hormone III and its acid. The juvenile hormone III RIA activity synthesized in vitro by corpora allata from day-5 last-instar larvae was identified as juvenile hormone III by high pressure liquid chromatography. The kinetics of hormone synthesis by corpora allata from selected stages during larval-pupal development revealed differential rates of synthesis, suggesting that juvenile hormone III may have a hormonal function in the larva and that regulation of its synthesis may occur. The significance of these developmental fluctuations in rates of juvenile hormone III synthesis by the corpora allata is discussed in relation to the haemolymph titres of the hormone.  相似文献   

12.
Co-incubation of corpora allata (CA) from the cockroach, Diploptera punctata, with ovaries, fat body or muscle but not brain or testis, leads to a substantial increase in juvenile hormone synthesis. Incubation of the glands in medium pre-conditioned with ovaries also stimulates JH synthesis. The ovary was used as a convenient source of stimulatory factor for a detailed analysis of its physiological effects on the CA. The increase in JH synthesis is stable, maintained over 24h after exposure to the stimulatory factor. Stimulation is dose-dependent, and the corpora allata show an exquisite relationship between sensitivity to this factor and developmental stage. Day 0 and day 1 glands, as well as glands from post-vitellogenic females, are sensitive to stimulation, whereas glands from vitellogenic females are not sensitive. Corpora allata attached to the brain do not respond to the stimulatory factor, and denervation in vivo leads to an increase in JH synthesis by the glands and a loss in sensitivity to the factor. These data suggest that glands from pre- and post-vitellogenic females are inhibited by their nervous connection to the brain. In contrast, glands from vitellogenic females are normally responding to the endogenous stimulatory factor and are thus no longer stimulated in vitro. Co-incubation of CA with allatostatin and conditioned medium still leads to a stimulation of JH synthesis, suggesting that the restraining effect of the nervous connections to the brain is not caused by allatostatin. The CA cell number increases between emergence and day 2, then remains stable until after oviposition. The stimulatory factor accelerates the increase in cell number in young adult females. The results are interpreted as providing evidence for a constitutive change in CA activity caused by a humoral factor produced by various tissues including the ovary, and modulated by nervous connections to the brain.  相似文献   

13.
Summary

Corpora allata from 8-day-old female Locusta migratoria, during the phase of yolk deposition, exhibit high rates of C-16 juvenile hormone (JH) biosynthesis. The effect of different potential factors which may be involved in the regulation of corpora allata activity is reported. The biosynthetic activity of corpora allata was determined by radiochemical assay.

In maturing females, no changes in corpora allata activity are detected during one daily cycle. Starvation reduces JH biosynthesis only 3 days after the beginning of the food deprivation. Suppression of the median neurosecretory material by electrocoagulation of the internal cardiaca tract (TCC-I) does not disturb JH biosynthesis whereas the transection of the allata I nerve fibres (NCA-I) or the electrocoagulation of the lateral neurosecretory pericarya results in a rapid decline of JH biosynthesis. These data indicate that the median and lateral allatotropins are different, and that only the lateral neurosecretory material exerts an allatostimulating action on corpora allata at the time of vitellogenesis. The corpora allata response to the median allatotropin changes during oocyte growth. C-16 JH and/or 20-hydroxyecdysone treatments in vitro (addition in the culture medium) and in vivo (injection in female) do not influence JH production in our experimental conditions.  相似文献   

14.
The O-methyltransferase, which is responsible for the methylation of farnesoic acid in the corpora allata of Diploptera punctata, is a cytosolic enzyme. The activity of O-methyltransferase closely parallels JH biosynthesis in last instars and adult females. Because allatostatin 4 (AST 4) from D. punctata and callatostatin 5 (CAST 5) from Calliphora vomitoria can inhibit juvenile hormone biosynthesis, their effects on the activity of O-methyltransferase and epoxidase, the enzymes involved in the final two steps of juvenile hormone biosynthesis, were investigated in vitro. AST 4 can inhibit methyltransferase activity whereas CAST 5 stimulates it. AST 4 inhibits epoxidase activity slightly whereas CAST 5 inhibits it significantly (36%). Treatment of corpora allata with farnesoic acid (40 μM) can reverse the inhibitory effect of AST 4 and CAST 5 on JH release by corpora allata. Thus, allatostatins appear to exert their inhibitory effect on JH biosynthesis at least partially through inhibition of the activity of terminal enzymes. Two biosynthetic pathways for the conversion of farnesoic acid to JH may exist in corpora allata of D. punctata: the predominant pathway is farnesoic acid to methyl farnesoate, then to JH whereas the other, representing about 5–10% of total JH production, is farnesoic acid to JH III acid, then to JH.  相似文献   

15.
Stay B  Zhang JR  Kwok RD  Tobe SS 《Peptides》2003,24(10):1501-1510
The distribution of FMRFamide immunoreactivity in the brain-retrocerebral complex of adult female Diploptera punctata was examined. Immunoreactivity was observed in the brain and corpus allatum as well as in the corpus cardiacum. Immunoreactivity co-localized with allatostatin immunoreactivity within several lateral neurosecretory cells of the brain and in their endings within the corpus allatum. By in vitro radiochemical assay of juvenile hormone release, the effect of two native D. punctata RFamides, an FLRFamide (Leucomyosuppressin) and an FIRFamide were examined. The latter, for which the sequence (SKPANFIRFamide) is reported here, stimulated juvenile hormone release but acted only on corpora allata from females at the end of vitellogenesis (day 6). The interaction of these two RFamides and three D. punctata allatostatins, Dippu-AST 2, 5, and 7 were similarly examined. Only Dippu-AST 2 stimulated release of RFamides from the corpora allata and only on day 6 whereas both RFamides were able to attenuate the inhibitory activity of Dippu-AST 2.  相似文献   

16.
The rate of juvenile hormone biosynthesis by locust corpora allata after transection of the nervi corporis allati 1, was measured in vitro using both radiochemical assay and gas chromatography—mass spectroscopy analyses. Incubations in different culture media or in pure haemolymph result in a low rate of juvenile hormone biosynthesis by disconnected glands. In vivo studies using juvenile, chromatotropic and gonadotropic effects of the corpora allata confirm the low activity of the disconnected glands. Furthermore, animals with disconnected corpora allata appear to be more sensitive to corpora allata implantation than control hosts.  相似文献   

17.
When the titre of juvenile hormone III in female Leptinotarsa decemlineata was elevated by the implantation of supernumerary corpora allata or by the injection of the hormone, the rate of endogenous hormone production by the host glands was significantly restrained, as determined by the short-term in vitro radiochemical assay. From denervation studies, it is suggested that during phases of elevated juvenile hormone titre, the corpus allatum activity is regulated via humoral as well as neural factors requiring intact nerve connections. Restrainment of gland activity appears to be mainly via the neural pathway. Isolated corpora allata were not influenced by 10?5 M juvenile hormone III added to the incubation medium in vitro.Studies with farnesenic acid revealed that the final two enzymatic steps in the biosynthetic pathway of juvenile hormone are also diminished during prolonged neural inhibition of the corpora allata.20-Hydroxyecdysone and precocene II had no apparent effect on the corpus allatum activity of Leptinotarsa decemlineata.  相似文献   

18.
Normal rates of juvenile hormone synthesis, cell number and volume of corpora allata were measured in penultimate and final-instar male larvae of Diploptera punctata. The rate of juvenile hormone synthesis per corpus allatum cell was highest on the 4th day of the penultimate stadium, declined slowly for the remainder of that stadium, and rapidly after the first day of the final stadium.Regulation of the corpora allata in final-instar males was studied by experimental manipulation of the corpora allata followed by in vitro radiochemical assay of juvenile hormone synthesis. Nervous inhibition of the corpora allata during the final stadium is suggested by the observation that rates of juvenile hormone synthesis increased following denervation of the corpora allata at the start of the stadium; this operation induced a supernumerary larval instar. Juvenile hormone synthesis by corpora allata denervated at progressively later ages in the final stadium and assayed after 4 days decreased with age at operation. This suggests an increasingly unfavourable humoral environment in the final stadium, which was confirmed by the low rate of juvenile hormone synthesis of adult female corpora allata implanted into final-instar larvae. Thus, inhibitory factors or lack of stimulatory factors in the haemolymph may act with neural inhibition to suppress juvenile hormone synthesis in final-instar males.  相似文献   

19.
Direct radiochemical measurements of juvenile hormone synthesis showed that corpora allata from adult female Diploptera punctata can be inhibited in vitro by neuropeptides extracted from several ganglia of the central nervous system of females at many stages of the reproductive cycle. Extracts of protocerebra, corpora cardiaca, suboesophageal, thoracic and ventral ganglia all elicited dose-depedent reductions in juvenile hormone synthesis. On a ‘per organ’ basis, the protocerebrum contains the most extractable material. Inhibitory activity of extracts of suboesophageal, thoracic and 6th abdominal ganglia, like that of protocerebra (Rankin et al., 1986) was trypsin sensitive.Glands of high activity were less sensitive to protocerebral extract than those of low activity. The inhibitory effect on glands of low activity was maximal within 1 h, persisted in the presence of protocerebral extract for at least 46 h, and was abolished within 1 h after corpora allata were placed in normal medium. The inhibitory effect of protocerebral extract was not altered by the addition of magnesium to the medium. The extract had a specific effect on synthetic step(s) prior to methylation and epoxidation as demonstrated by enhanced juvenile hormone synthesis in the presence of inhibitory factor and the juvenile hormone precursor, farnesoic acid.  相似文献   

20.
There are 2 broad morphological types of corpora allata in adult Lepidoptera, a capsular type gland and an isolated cell type gland. Compared with the ubiquitous capsular corpus allatum, the isolated cell type has a narrow distribution in Lepidoptera and appears to be restricted to adult noctuids of the sub-family Hadeninae. The isolated cell corpora allata of adults of Mamestra configurata (Lepidoptera : Noctuidae) are composed of 30 – 40 large (ca 0.1 mm), semi-transparent, spherical, isolated cells held in 2 clusters by fine trachae and nerve fibers. These clusters lie directly beneath and in close proximity to the brain. Many similarities exist between the ultrastructure of the isolated cell corpora allata of M. configurata and the more common capsular gland. A high density of mitochondria, the arrangement of smooth endoplasmic reticulum in concentric “finger print” whorls, an interconnecting lacunae system of lipid vacuoles, and the presence of neurosecretory nerve endings are features commonly seen in active corpora allata of both types. The corpora allata of M. configurata are larger in the male, the calculated gland volume of males being more than 4 times that of females. Gland activity may change in senescent males as judged by the degeneration of the mitochondria, the reduction of the lacunae system and the dissolution of the smooth endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号